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For treating the stochastic functions Wiener ['] proposed a method
similar to that of Volterra functional expansions. He employed the Gaussian
white noise as a basis function. The method was subsequently named ‘Wi-
ener-Hermite expansion’ and proved to be a powerful tool for handling a
number of nonlinear stochastic problems [2]. The very essense of this method —
employment of Gaussian white noise — makes it unsuitable for a variety of
physical problems where the fluctuations are not so frequent and each of them
possesses a significant impact on the system investigated. Recently, the method
of Wiener has been forwarded into a direction of more adequate choice of
basis function considering the point random functions (for definition see [>*])
and specifying the correlation properties of the generating set of random po-
ints [>11].

The present paper is the next step in this line of thinking and deals with
the problem of incorporation of still more information into the basis function.
For this purpose the marked random point functions are considered for which
a random variable called mark is associated with each random point of gene-
rating set [¢. Multipoint correlation functions of the random set [%] are em-
ployed, and statistics for a marked random point function are developed.
Afterwards the way of constructiug the Volterra-Wiener series with such basis
functions is outlined.

Consider the generalized random density function

(1) o (x; w=0(2)=2'8(z—2)
7
where z=(xy, Xg, X33 Uy, - - - » Uy) is the outer product of the geometrical space

x and m-dimensional mark vector space u. There are no obstacles to include
the time and it is not done only for the sake of brevity of notations. Respec-
tively, 8(-) are Dirac deltas of (m+3)-th order. It is well known [*] that every
filtered random point function can be represented as a linear transformation
of @, namely

@ sxiw- [ [Ke—% o nesaru= 3 KE-x; )
Re U 7

where U is the mark space.
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Let us now following [?] introduce the probability density functions
Jo(Xp oo X5y, ..., 1,) of the system of random points {z}={x;; w}in the
(m+ 3)-dimensional space, i. e.

3) AP=f,(x;,...,X,; ul,...,u,,)d3x1,...,d3x,,d’”u1...d”‘u,,

is the probability of simultaneous occurrence of n points X, each of them
with its mark u in the intervals

X=X=X+dX, w<usu+du, i=1,2,... , .
In the case when the points are mutually independent in stochastic sense we

arrive at the so-called compound Poisson” random function [*] for which func-
tions f, can be decomposed into the following way

(4) fa=filas w) oo (s u) = Tap ()

where A; is the intensity of the associated counting function and P(u,) is the
probability density of a mark.

If there exists a correlation between the points x and marks u it can be
acknowledged by means of functions fu In this instance the following example
is very instructive. Let x be the radius-vector of a point of the three-dimen-
sional Eucledian space and the matrk be simply a real positive number a.
If this number is the radius of a rigid sphere situated at the respective random
point and if spheres are not to intersect each other then for f, we have

(5) Fo(Xi, Xa5 @y, a3)=Qys f1 (X, ; @) f1(Xe; @)
where
0 for |x,—%,|<a+a,
Ql2= .
1 otherwise.
The higher-order probability densities £, can be specified as

(6) fh (Xl’ e Xy Ary e ey a,,)=f1 (xl; al) .. 'fl(xn; an)Ql% L anQ23
cea an . e Qn—ln-

The random field created by this system of random points is a straight-for-
ward generalization of the so-called” PDS-field (Perfect Disorder of Spheres)
introduced recently in [?] for the case of equi-sized non-overlapping spheres
randomly dispersed throughout an unbounded three-dimensional space. The
random function created by (5), (6) can be named PDSRR-field (Perfect Diso-
rder of Spheres of Random Radii).

A number of other examples can be cited of random fields with various
types of interconnection between random points and their marks, but it goes
well beyond the frame of this short note and shall be done elsewhere.

Having functions f, one can obtain the statistics (moments, cumulants,
etc.) of the random density function . This is possible due to results of
Stratonovich [3] which apply to our case

(@(x; w)=f(x; u)
(@05 W) (Xy; up)y=1 (x,; uy) 5(L, 2)+ fo (x4, Xy; 15, uy)
(7) @05 w) o (X5 ) o (Xg; ) =F, (%, u,) (1, 2)5(1, 3)
+3{8(1’2)f2 (xl’ X35 uy, u3)}s+f3 (Xl’ X9, X35 uy, U, ll3)
where 8(/, /)=08(z;—~z;) and {-}, is the symmetrization operation.
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The very outlook of (2) hints how to construct the Volterra functional
series with the generalized random density function as a basis function, na-
mely

(8) Fx)= 2V [F]

where V) are the respective Volterra functionals

Vf,)")[[']-——f...ff...fK}:”(x—gl,...,x—"én; u,...,1,)
R3 R U U

o u)oE; u). ..o, u,)d?E ... d%%,d"u,...d"u,

It is clearly seen that the asymmetry between the spatial coordinates and
marks from (2) is retained in (8). The latter is crucial for the physical appli-
cation and appears to be novel.

Functionals (8) have no direct physical meaning, though it is clear that
the n-th order functional is related to the n-tuple interaction between the
inhomogenities. In addition, these functionals are neither centered stochastic
functions nor orthogonal in a stochastic sense. Part of these shortcomings are
removed if instead of simple n-th order products of @ the following quanti-
ties are employed in functionals:

@) AP=0 (8, u) o (&, u)—5(1, 2] . .. [0 (&, 1,)—8(2, 1)—---—d(n—1, n)].
On the basis of (7) after some tedious manipulations it is proved that
(10) Ay =f, Xy e oy X3 My, .., 1)

Now we have at our disposal the centered functionals

(11) GEJ”[F]:f... ff...f/(g)(x--gl,...,x—gn, Uy .o
B R k¢

[A((Pn)_fn(gh es oy gns ulx LS | un)]dggl"' d3§ﬂdm ul LA dmu

which are still non-orthogonal in stochastic sense. Orthogonal functionals can
be constructed only for the limiting cases of compound Poisson function or
functions of the type of perfect disorder through obvious generalization of
the techniques of [%%] and [%], respectively. The physical meaning of the n-th
order functional (11) is the quantity which has to be added to the field in
order to incorporate the n-tuple interaction if all the lower-order interactions
are already acknowledged.

It is interesting to note that under certain not very restrictive conditions
on functions f,, the Volterra-Wiener expansion exhibifs virial property. Con-
sider a homogeneous generalized random function with intensity A, the latter
being the number of random points falling per unit volume. In the case of

compound Poisson random density function a relation of type (4) holds. In the
general case one has:

(12) Jo=NPU)P(u,) ... Pu)o(xy, ..., X, U,...,u,)

If we now require for function ¢ to be of order 0(1), then we obtain that the
contribution of each functional (11) of n-th order to the average characteris-

ne
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tics is of order of A, In other words, ¢ does not have to include delta func-
tions in order to secure viriality. An example of functions ¢, which are delta
functions, is given in ['9]. The virial property of Volterra-Wiener expansion
is of outstanding importance in obtaining asymptotically correct results for
various nomnlinear stochastic systems.
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