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One of the simplest systems with randonr behaviour of solution was proposed by L o -  
r e  n z [I] inconnection with the natural convection in unbounded layers. Since then the  
kscenz system has been thoroughly investigated fro111 different points of view la]  and 
ha= S e r r n ~ c  ?er::ys tke principal example for deterministic dynamical system with ' 

stochastic 57:Z11:3~5. Sox i: is frequently used when displaying novel approaches to  
randomization ?f Z~-zaz l c  y s i e m s  (see e. g. [3]). 

In autb.n:'s works [a," a new approach to stochasticity of nonlinear dynamic sy- 
stems is proposed consisting of approxinlation of the  sought solution with random 
point function. This approach has proved effective in modelling the turbulent Poiseuille 
flows [617], giving for the  turbulent characteristics predictions that compare well with 
the' experimental data. Though the latter is a3 important rerification of the said idea, 
it is still imperative i- f 4 3  a Srz.zightiorward experimental evidence for this assump- 

? " tion. The sea! rxr:z-ezt fl:-,r.-s art? t oo  difiicult t o  treat, and though the  random point 
strncfure is 1-~rtuaily proved experimentally by the discovery of the so-called coherent 
structures. the respective results bear essentially qualitative meaning. In this instance 
it is important to  investigate low-dimensional model systems in order t o  obtain quan- 
titative results. 

The present short note is devoted to  investigation of t h e  random point regimes 
of  t h e  Lorenz system bv  means of direct numerical experiment. 

I. Stating the Problem. T ~ P  Lzrecz  system [I] in terms of dimensionless variables 
has the fez: 

where x is the first Foi i rxr  amplitude for the  stream function; y, z - t he  first two 
for the  tenlperature; b is c o ~ ~ b i z a t i o n  of t h e  wavelengths along t h e  two  spatial direc- 
t ions;  o is the  Prandtl number and r is the  Rayleigh number. Lorenz investigated (1) 
for o=10 and b=8/3 and showed that for r224.74 all the three stationary points of 
the system became unstable. He conducted a numerical experiment for r=28 and con- 
firmed the assumptiou that the  trajectories can eventually g o  random for supercritical 
Rayleigh numbers. 

The first quantitative numerical experiments concerned with the statistics of the  
random solution a re  those of L t i c  k e [" who obtained data  for the  correlation coeffi- 
cients of the three functions zc, y, z and cross-correlation of x and y. From those 
data, however, a conclusion cannot be reached whether the  stochastic trajectories a re  



random point functions. The latter can be done only through specially organized nu- 
merical experiments involving identification of structures. 

2. Difference Scheme. In [a] is employed a difference approximation to (1) of fourth 
order, while in [I] it is of the second order. Here we choose the scheme of lower-order 
approximation in order to reduce the required computational time. It is important to  
note that the correlations obtained here with the second-order difference scheme coin- 
cide with the respective quantities calculated in [" with fourth-order scheme within 
0.1 O/O. This means that the stochastic behaviour is reproduced adequately by both 
schemes and allows us to  use the scheme of lower-order approximation. 

3. Preparing the Statistical Ensemble. Initially, a sufficient nuxbes of tixie steps are 
executed to bring the trajectory in the vicinity of the a%tmctoskof the Lorenz 
system. Assuming a time increment ~ = 0 . 0 1  a number of PrnO Erne steps proves to  
be more than enough to  achieve that aim. The last 1001 time steps are recorded as 
the first realization of the process under study. Then by means of random number ge- 
nerator a random integer from the interval [O, 10001 is selected to define the number -- 
of time steps to  be executed in order to obtain a new initial condition. After that the 
next 1001 steps are executed and the result recorded as the second realization of the 
random solution. This procedure is repeated for the third, fourth, etc. realizations. 

The same correlation functions as in [3] are calculated by means of ensemble ave- 
raging. Let us denote by 4 - ) the ensemble 2%-eragicg a5 by7 - the time averaging 
of [a] and the previous section. For ensemble oi 10030 realizatiocs fbe quantity (2) di- 
ffers from 2 by 0.80/o; (xy)  from - by 3.1 %; (xx )  from T x -  by 3 % ; ( y y )  from - 
yy - by 4 (zz) fromz - by 2.5%. When the number of realizations is increased 
up to 120000 the differences are not discernible, which allows us to adopt the last 
number as the total size of the ensemble. This excellent agreement provides additional 
support to the assertion that the skochssbic behaviour obtained is an intrinsic property 
of the differential system and is not affected by Ccr s>zci?z d!ffe,-ewe scheme employed 
in computations. 

4. Identifying the Structures. It is well known that for the considered Ra2-krig? ma- 
ber r=28  the solution for function z  is positive. Hence we can define the centre of 
a structure to be the point in which z  has a local maximum. 

As mentioned in the previous section we have an ensemble of realizations which 
are numerically defined in 1001 points, regularly spaced in the interval [0, 101. So we 
define all points in which the respective set function has a local maximum and then 
turn to the problem in which of the two adjacent in femds  sf Ie~3.5 0.01 the maximum 
is situated. Using second-order approximation it can be decided that the maximum is 
in that interval for which the value of the function at the other boundaql point is 
higher. After the intervals containing local maxima have been identified, the value of 
1 is assigned to them, 0 being assigned to the remaining intervals. Thus we arrive t o  
a realization of the system of random points - centres of the structures. Let us de- 
note the arrays of realizations by dl,, where index i refers to the number of the reali- 
zation and index j - to number of the interval. Then for the statistical average of 
the number of points per unit length we have 

Nen 

(2) y j= tNe ,  i = l  Z '  d,j, 

where N,, is the number of realizations (size of the ensemble). Accordingly, for the 
two-point probability density (stationarity of the process acknowledged) we obtain 

Nen 

(3) f a(zj) = - c di,diJ. taN,, i=1 
I 

It is convenient to use the normalized function I 

(4) Q(z) = ~-~fzdzj). I 





5. Results and Discussion. As is mentioned above, the number of computed realiza- 
tions of the random solution of Lorenz system (1) is 120000. I t  is interesting to note 
that even for this quite a formidable an ensemble the mean number y of random 
points per unit length (the intensity of the random point process) vary significantly 
(about 8%) from point to pointiti the interval [0, 101. The time average over the entire inter- 
val under consideration gives y= 1.327 which we adopt as the result for the said quan- 
tity. The slow conversion with the increase of the size of ensemble can he attributed 
to the method of estimation of the interval in which a structure is centered. Some- 
times the location of maximum can appear in the interval with the lower value of func- 
tion at the other boundary point than the point of maximum of set function. This is 
especially probable when in the two adjacent intervals to the point of maxi~nutrl the 
function z adopts at the other boundary points approximately the same magnitudes. 
This is no surprise, because it is well known that slight variations in the functional 
value can result in significant error in estimating the roots or extreinal points when 
the gradients of the function are small. 

The Fugure presents the normalized two-point probability density function Q(T) of 
the system of random points generating the random point solution to the Lorenz sy- 
stem. It is obvious that for ~<0 .63  the probability is exactly equal to zero which 
means that two structures cannot be situated closer than that distance. In other words, 
they cannot significantly overlap each other akich is rery sinilar E the situation pre- 
sent in the particulate two-phase media wjih random srmcf-rre [̂ :. -- 

For large separation distances between the structures they are statistically inde- 
pendent and Q(z) eventually approaches unity for T-m. This process, however, is slow 
and for moderate values of the argument (up to approximately 10-15) the function 
Q(z) exhibits a number of peaks whose positions are related to the length scale of the 
structure. It is so because the most probable moment for occurrence of a structure is 
when the previous one is fairly decaxed. 

The results obtained in the present work prove that thi? sccbs',lc sohtisn to the 
Lorenz system is a random point function for r=28 when the :rz'f:tc?- 5el:?gs Yo 
the strange attractor. This is an i~llportant conclusion which opens a ZER- z\-ex=e :ar 
modelling the stochastic behaviour of the solutions of nonlinear dynamic sj-sterna con- 
sisting in approximating with random point functions. Application of this approach for 
predicting the statistics of the Lorenz system and comparison with the numerical expe- 
riments is due in a following paper. 
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