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Introduction
B1nard-Marangoni convection refers to the thermo-
capillary flow developing in a shallow horizontal liquid
layer heated from below when its upper boundary is a
free surface open to the ambient air.'`4 In the simpli-
fied case of a two-dimensional geometry the ther-
moconvective evolution of the open surface can be
described by the following equation

au / do au a /Ua d a u a4u
- + - + a - + + u

+ mu - / (a"l dx = 0 (I)
I Jax/

0

where thermocapillary and buoyancy effects are taken
into account. 5 6 Equation (1), arising in B1nard-Mar-
angoni convection, is a variation on the Kuramoto-
Sivashinsky (KS) equation 3 

6 
7

au a du 2u a4 u
+ u + + -= 0(2)

at ax ax2  ax4

where for simplicity we have equated all coefficients to
unity. Note in equation (1) the additional nonlinear
term 5(uu,)x. In addition, the coefficient 6 in equation
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(I) can change sign according to the effective gravity
level, and thus equation (I) accounts for both ground
and space (microgravity) conditions. When 6 < 0
(negative) such a term plays a stabilizing role whereas
if 6 > 0 (positive) it tends to destabilize the surface.'

In the past few years a number of generalizations of
the KS equation have been published in the literature.
For instance the KS equation has been supplemented
with a term containing the third derivative in space
thus accounting for inertia and dispersion effects,
which amounts to a combination of the KS equation
with the Korteweg-de Vries equation (KdV).8 In Ref.
8 the authors show how profoundly the addition of the
third derivative affects the KS equation, generally
leading to standard KdV solitary waves even when the
order of magnitude of the third derivative is of the
order of the values of the coefficients of the remaining
terms. Here, on the contrary, we are interested in a
generalization of the KS equation when the energy
supply provided by the Marangoni effect and the dissi-
pation, i.e., when the second and fourth derivatives
and the nonlinearity controlled by 6 in equation (1)
dominate while dispersion is negligible and yet local-
ized excitations, steady or otherwise, appear.

The role of the new nonlinear term in equation (1)
(KSV hereafter) was illustrated in Ref. 6 by means of
direct numerical simulations, and it was shown that if
the eikonal nonlinearity term u2 is removed (y - 0,
0) then the solution of (1) blows up in finite time.
Otherwise the chaotic dynamics of equation (1) are
essentially the same as for the KS equation.7 Note that
the KSV-KdV equation has been recently derived.9
On the other hand note also that the same nonlinearity
was earlier found in a different context."' However, as
in the equation derived in Ref. 10 there is no fourth-
order derivative in space; though it shares the same
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nonlinearity with equation (1) its mathematical proper-
ties are qualitatively different.

We concentrate our attention on the localized solu-
tions of equation (1) in the form of one-dimensional
traveling waves. As the eikonal nonlinearity term is
essential and cannot be removed, then y 7# 0. With no
other reason we set y = 3 for the sake of definiteness.
Our main purpose is to assess the role played by the
nonlinear term 5(uua), in the shape formation of a soli-
tary wave. To simplify the picture we neglect the linear
resistance term /3u, i.e., we take f3 = 0. The intricate
interplay between the nonlinearities and the linear re-
sistance would require special care, and this shall be
done elsewhere.

The localized solutions of (1) can be either
homoclinics when u 0 for x - +- or -I (the
traditional solitary wave in the form of a localized
hump decaying at both infinitely far sides) or het-
eroclinics (a kink) when u -u a for x - -c and u -
u + - for x- + a. The second case is more general, and
we shall concern ourselves in what follows with the
heteroclinics of (l). It is clear that the derivative u, of a
localized solution is always a homoclinics and hence
the integral term in (1) has a finite value even when L
- -. Then taking L - - we can neglect that term in
equation (1) and consider a simplified version of (1),
namely

"experiments" to be performed. One may argue that
equation (l) is for the deviation from the main state and
hence at infinity "a" should decay to zero. It is not
clear, however, at which infinity (-- or + x) the
function u decays for this depends on the specific phys-
ical case considered. So we should allow the more
general case u x. 0. Fortunately, under some not
very restrictive limitations in the relationship between
6 and u - one can introduce an appropriate scaling and
exclude u-- from the equation. Indeed, upon introduc-
ing (6) into (7) we get

cv + (-y + )tU2 + 6( f u(6) d6)u

+ (l + (n -)v' + if" = 0 (8)

Let us call v,) the function that satisfies (7) when
u-x = 0. Then resealing again the quantities

V-= (I + )312 v( l+u ),
cl = c(l± + 3)2 (9)

we get

cV(, + (y + 6)v6

+ 6 ( 1 u,(() d6) Vo + uV) + U O 0 (10)

au (an \2

at Yax /
a / au+ 6-u-

ax \ ax)

a2 u rJ
4 U+ - + - = 0 (3)

ax2 ax4 Naturally, the scaling (8) demands that

Consider traveling waves that are functions only of
the coordinate

-= x-ct (4)

when (3) reduces to the following ODE, u = u(-),

-cu' + (y + a)u'2 + 3uu" + U" + UI V= O (5)

Here c is the phase velocity or celerity of the traveling
wave and a "prime" denotes derivative with respect to
O (superscript prime number indicates order of deriva-
tive).

When 8 = 0 (KS case) using the transformation

v-= a or u f v((I)d i + ua (6)

it permits lowering of the order of (5) from fourth order
in "a" to third order in "v". Unfortunately, it is not
the case when the full equation (5) with 6 0 0 is consid-
ered. Still we prefer to use the substitution (6) because
it reduces the number of computer operations when
implementing the numerical algorithm. So, we recast
(5) to

-cv + (y + 5)v2 + buSa + v"' 0 (7)

where u is defined by the second equation in (6). Of
course, the substitution (6) is formally equivalent to
integration and u is in fact an integration constant.
Appearance of a new constant ua_ immediately in-
creases in order of magnitude the number of numerical
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u x > -

161

for 6 > 0

for 8<0
(I I)

-- < u-x < +- for 6 = 0
Hence we shall consider only the solitary waves of the
kink type with u X satisfying conditions (II).

Putting (10) as a system of ODEs in normal form we
have (for simplicity denote now x - uV,)

x' - y = 0

y - z = O
z' + y [I + 6a(()] + (y + )X2 -Cx = 0,

a = f x(~) d~

for which the inverse boundary value problem

x,y, z- 0 for +-*o-
is to be solved if localized solutions are sought.

(12)

(13)

Variational imbedding"' 1 2

In the previous section we arrived at the inverse prob-
lem of identifying the homoclinic trajectory of (12).
The problem is of inverse nature because we have two
boundary conditions for each unknown function x, y, z,
while the corresponding equation is of first order.



Solutions of an equation for Benard-Marangoni convection: C. 1. Christov and M. G. Velarde

The straightforward approach to calculating the
homoclinics is to use the so-called shooting procedure,
which consists in solving the initial value problem for
(12) with x = y = 0 and z = e, at the left boundary of
the (reduced) interval ( = ( x. This must be carried
out many times with different values of e, until the
value for e, is found for which the boundary conditions
at the right boundary of the interval, namely, ( = -+=

are also satisfied. For the problem under consideration
the shooting procedure was being applied, e.g., in
Refs. 13 and 14 (in Ref. 13 to an even more complicated
equation). The difficulty with shooting techniques is
that the initial value problem for equation (12) is intrin-
sically highly unstable, and therefore the requirements
on mesh size and other properties of the difference
scheme are very stringent.' 4

Recently" a different approach to the inverse prob-
lems was proposed. It is a variational imbedding proce-
dure (MVI hereafter) and was originally implemented
for calculating the shape of homoclinics of the Lorenz
system. The essence of the new method is in the re-
placement of the original unstable initial-value problem
by the problem of minimization of the quadratic func-
tional of the equations of the governing system

j f {(x _ y) 2 + (y z)2

+ [z' + y + buy + (y + 8)X2 - cx]2}dg (14)

Here we shall use a MVI that is slightly modified
with respect to that used in Refs. I I and 12, namely we

xi.I - -2x+ x [2 (y + 6)
2x2 + c2 ]xi =

discretize the problem yet on the level of the func-
tional; i.e., J is approximated by the function of many
variables

*=2 { ( h
) + I - -i 2

+ L I[ - Zi + (y + )X2 - cx + (1 + Iu,)y,1}

(15)

This permits us to derive the difference scheme in
conservative form. The scheme provides only a first-
order spatial approximation O(h) of the functional, but
it is enough for the purpose here because the higher
order approximations require a further increase in the
number of arithmetic computations per grid point.

The necessary conditions for minimization of the
function of many variables, 1, is to have all its partial
derivatives with respect to different arguments equal to
zero, namely

ai
axi

0, i 2.N -1(16)
ay, az,

Differentiation with respect to x,, y,, z, XN, YN, ZN is
not performed because these are specified by the
boundary conditions, namely

Xi =Y =-ZxN YN ZN-o (17)

Then, the different derivatives in (15) give the three
main groups of difference equations

3(y + c)cx2 + Yi y i

+ h

+ [2(y -i 5)xi -_ C, [Zi+,' Z-1 + (I + 5ii)YjI (18-x)

y+I- 2y_ + _i I - [I + (I + r5u)2]yi - Zi ' Z - xi+, - Xi + [Zi+I Z1 + (y + -)x2 - cxi] (I + 5ui) (18-y)h2h h Lh I
zi+, - 2 zi + zin- , i Yi+ I Yi + -[(a + 8)X2 + (I + IUi)yi _

hh h
[(y + 5)xa2, + (I + 8u, ,)y, - cxi l} (18-z)

The way we posed the system (18) yields clues on how to linearize it and how to carry out the iterations. For
example, the first equation can be treated iteratively as follows

I [xn' -2xn7+ + xn+1 '] - [2(y + 5) 2(x7)2 + c 2 ]xn 'h2
i' i 1-'

- 3(y + c)c(x7)2 + y h + [2(y + 5)x7 - c] [ ; I h + (I + 8u0)y"1(19)

i.e., only the main terms are taken on the new iterative
stage, the latter being distinguished by the superscript
"(n + 1)". This is attractive because we arrive at a
three-diagonal linear system with strongly dominating
principal diagonal.

In fact we actually did implement the scheme (19)
and at the beginning of the iterations the convergence
was very fast, but as the solution was approached the
pace became so slow that the advantage was lost.

The most consistent approach to improve the con-
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vergence is to use Newton's quasilinearization. Unfor-
tunately, in our case using Newton's method yields a
conjugate tridiagonal system for the vector (xi, yi, zi),
which poses problems with the computational imple-
mentation. Of course these difficulties can be over-
come but once again at the expense of increasing the

number of arithmetic operations per unit mesh point. A
reasonable compromise can be obtained by the sepa-
rate linearization of (15).

Consider the (n + I)st iterative stage. Suppose we
are initially dealing with x. Then we consider the (n +
DMth iteration for the functional I, namely

N-+1/ wtnxi1 h X2+1 )2 (Y1 n7 4)+ I/3 + E { (Xi+ + 1 -Yin) + (uY) - ( + cZix) .
[i h { ' C)Xin in I - CXnI I + (I + 83U,)yin- (r + C)Xin2] (20-x)

i.e., we quasilinearize just the term containing the nonlinear contribution from the first unknown. Then the first
difference system for the set function Xi reads

I-(xin ++ -2x7nII + xn+,I) - [2(y + c)x7 -C] 2X'I I

= Yi Yi I+ [2(y + 3)xi'
h

h Z1 +
At first sight (21) does not differ significantly from

(19). In the limit n -a -, i.e., when Jxn± I - Xn1 0 the
two equations give in fact the difference approximation
(18 - x). However, although small, the differences
between (21) and (19) cannot be overlooked, and the
iterations conducted using (21-x) exhibit linear but sta-
ble convergence with increasing n.

The problem with the other two functions is much
less complicated because there are no nonlinear terms
involving y and z (the system is bilinear with respect to
y and z). So the next "fractional-step" iteration of the
functional is

____n+_I - n+II
In + 213 = E i + I Xi - n+ I) + (Yi++ -I YI 4

+ [4i" Z, + (y + c)(x"I' 1)2 - CXvn I' + (I + 8uI' I)Yn'j} (20-y)

Here xi ' is already known from the (n + .)th step. Correspondingly, i' ' is calculated from x', by means of the
trapezoidal rule. Then the system of equations for the minimization of I2 +2/3 with respect to the unknowns yin' is
the following

I (Yn+1 - 2yn+1' + yn +,I) - [(I + 8unI1)2 + I]yn+I

I-,- n+ I [ n-,I _ i- 4 i_ Xi+I A - -Z I~ + (y + 5) (Xi- 1) 2

h IIL h
I cx ]J(I + u7i') (21-y)

This is once more a linear three-diagonal difference system.
In the same manner we treat the minimization with respect to z, namely, the third fractional iterative step for the

functional

n (xi-+ I n+1 2 niI - n(X+h Xi -yn ) + hY+l Y - zin+

Zi + (y + c)(x7n+1)2 
- cX, in' + (I + 8unI)yI]} (21-z)L h iiI i( z
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The corresponding system of linear equations is

2Z ' + z7i I)

n I -I n + I

z+ h + h[(y++ +8)(xII') 2 -CXn+' + (I + 5,un I')y7n +]
+ -[( X + 8)(x7,) 2 

- cx , + (1 + 8u7 l)y i , ] -z)

h

Thus we have a complete system of difference equa-
tions for the set functions we are looking for. Equa-
tions (21) are to be satisfied at all points starting from i
= 2 to i = N - I while at the boundary points the
boundary conditions (17) are imposed.

Here becomes apparent the advantage of using the
substitution (6) that for the set functions has the form

x

un+1 = Xn x'+(6) d4;

Otherwise we would be faced with four equations of
type (21) and the computational time required would be
about 30% greater, inasmuch as solving the three-diag-
onal system requires order of magnitude more calcula-
tions than the simple trapezoidal rule, i.e., the total
amount of computations is defined by the number of
main equations. In our case these are (21).

Iterations are conducted until

max{(x7' x'), (y" + y"), (z" + z")} - E

E= 10-7

Computations are made using double precision.
Here the major advantage of the MVI becomes ap-

parent. Even if we are not "on" the exact "location"
c* of the nonlinear eigenvalue problem we can still
obtain a solution to the variational imbedding problem
that is fairly close to the shape of the real one, and we
can define the optimal parameters of the mesh for a
given c. Then we proceed to improve the accuracy in c.
For illustration we start with y = 3, 8 = 0, c = 1. Let
us see the main difficulties to be overcome.

Verification of the difference scheme

Let us denote by N the total number of grid points. It
cannot be very large (although it is desired) due to
computer limitations. It cannot be very small either
because then the mesh would not be dense enough to
allow sufficient flexibility. So we choose N = 1601 to
start with. The role of N is discussed in detail below.

Another important integer parameter is the number
NS at which the origin of the coordinate system is
placed. For different values of control parameters
(y, 8) and celerity c, the optimal value of NS may vary
significantly, and this will be shown in the next section.
For the test case under consideration it can be shown
from the linearized equation that the solitary wave of
homoclinics type (if it exists at all) decays twice faster
at - - than at + a. So the proper position for the origin
of the coordinate system is approximately A of the
interval under consideration. As far as in the right-

hand part of the interval the forerunner is governed by
the wavy decaying solution we can still further in-
crease the portion allotted to it and set NS = 5N/16 (a
bit less than D).

Role of the initial conditions
Having N and NS specified, one can construct an

initial condition. As it appears from the numerical ex-
periments the exact form of the initial condition is not
especially important. Rather, the most important item
is the amplitude of the initial condition. So we simply
set

ui = Ci,,,(i - 1 )(NS - i)!NS for i!c NS
UNS+i = UNS I

U2NS+j 0 i= I,...,N 2NS
(22)

In case 2NS > N the construction is the same but
instead of NS NS, = N - NS is used.

The constant Ci,, defines the amplitude of the initial
condition. It is an important quantity as we are faced
with a bifurcation problem in which the trivial solution
is always present. If we choose a small value (e.g., Ci"
< I) then the iterations converge to the trivial solution.
If we select a very large Ci,,1 > 100 then for certain
cases the iterations may diverge. It turns out that Ci,, 1
10 is a suitable choice for the amplitude of the initial
condition.

The actual infinity
Further we have the problem of selecting the most

sensitive parameter, i.e., the finite size of the interval
L. If the selected value is too small the problems of the
previous abset are exaggerated. Either the solution
rapidly converges to zero or it diverges. Going to larger
L eliminates this difficulty but a new one develops. For
very large L two localized structures can appear in the
interval under consideration that are the kind of bound
states discussed in Ref. 8. Here it should be mentioned
that we keep N = 1601, c = I while playing with L.

When we tried a smaller value L = 10 an instability
of the iterative process occurred. Rather than over-
coming it by some standard techniques (e.g., relaxa-
tion) we took a larger value, namely, L = 20. For the
latter a nontrivial solution to the imbedding problem
was found after about 80 iterations, and it gave 6 10 5

for I. This result means that we are probably very close
to the solution sought. So, starting with it as an initial
condition we increase L to 32 and after less than 30
iterations, the solution is substantially improved in
detail though generally retaining the same shape.
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Moreover, the minimum value is drastically reduced
down to 1.6 10-6. The next increase is to 40 where the
minimum falls to 1.2 10-6 (remember that starting
directly with L = 40 leads to a two-hump solution of
type of bound state). Further increase of L with the
same number of points (N = 1601) gives a slight in-
crease of the minimum of I and finally when moving
from L = 80 to L = 100 the solution decays to zero in
the course of iterations. These effects are connected
with the fact that the mesh becomes too rough. So, for
the case under consideration with y = 3, c = I we can
say that the optimal value of L is 40. To implement the
above described "chase" we used a spline interpo-
lation method" to recalculate the shape of the initial
condition over the new set of grid points when the
value of L is increased (decreased) with fixed number
of points, N. Generally, the procedure allows us to
change all mesh parameters: N, NS, and L (or h) simul-
taneously as we illustrate in the following subsection.

The influence of the mesh resolution (number of grid
points N)

Taking advantage of the spline approximation proce-
dure we were able to change the number of grid points
with fixed L and fixed ratio (NS - I)/(N - 1) = se6. In
all cases to reduce the number of calculations we
started from the calculated in the previous subsection
shape (N = 1601, NS = 501, L = 40). These calcula-
tions illustrated the convergence of the difference solu-
tion to the solution of the differential problem. It
turned out that in the main portion of the interval [ - 12,
+ 16] where the predominant part of the energy of the
solitary wave is concentrated (about 99.9%) the solu-
tions with N = 1601, 3201, and 6401 virtually coincide
with each other and only N = 401 (respectively, N =
801) differs up to 5% (respectively, 2%) from N =
6401. This is a superb performance for a scheme of
first-order approximation 0(h) with respect to the spa-
tial discretization. Yet as far as the shape of the solitary
wave solution is concerned one can fully rely on the
mesh N = 1601.

Good agreement is observed in the far-distant por-
tion of the interval [16, 25] where only the roughest
solution N = 401 deviates significantly, while N -
1601 and higher N are fully acceptable. One must bear
in mind that the actual solution is so small in that region
that some of the deviation may be due to eventual
round-off errors in the computer representation of the
numbers.

To conclude this section we can say that the differ-
ence scheme developed here provides a good and rap-
idly converging approximation to the variational
imbedding problem and hence we can proceed further
with the essence of the imbedding.

Outline of the minimization procedure for
selecting the solution of the original problem
among the solutions of the MVI problem

In essence, the attractive part of the MVI procedure is
that one can calculate the solution of the embedding
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system for values of c for which a homoclinic solution
for the original system may not exist and to define thus
the function f(c) = min,,,,, Iix(e), y(f), z(f); c] for each
c. Finding the minimum of this function of c is the next
step, and if this minimum is equal to zero then the
original problem is solved. If the minimum is far from
the numerical approximation of the zero, then the con-
clusion is that no homoclinic solution to the original
problem exists. In the present section we give a brief
outline of the minimization algorithm, as a follow-up to
the method developed in Ref. 11.

For a prescribed set of values of the governing pa-
rameters y and 6 the scheme is as follows: (a) It is
roughly estimated the interval in which appears the
local minimum of functional I as a function of c
(namely, the function f(c)).

Usually this is done by performing an extensive set
of calculations with different c. To minimize the com-
putational costs the search is conducted in the vicinity
of the c*, which has previously been obtained for the
closest set of parameters y, B.

(b) A procedure implementing the method of golden
section is executed to locate the minimum with a priori
prescribed accuracy (as a rule we set that accuracy to
2E, where e is the accuracy at with which the iterations
for x, y, z are terminated).

In Figure I we give the results of the minimization
procedure with different mesh sizes. To clearly see the
behavior in the vicinity of the actual minimum only six
to eight of the smallest values of the functional are
shown. Table I provides the corresponding final result.
Here the only significant shortcoming of the first-order
spatial approximation of the difference scheme ap-
pears: the convergence of c to the one which is defined
by the differential problem is also linear. A simple
linear extrapolation gives a projection for c 1.216
which, surprisingly enough, coincides up to the four
secure digits with the result of Ref. 16. This excellent
agreement gives confidence in the results of both meth-
ods, that of Ref. 16 and the present method. However,
here one has some advantages in generality (see Refs.
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Figure 1. Accuracy of the minimization procedure of the varia-
tional functional for c = 1 and different mesh sizes N: + N =
801; A N = 1601; V N = 3201; E N = 6401.
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Table 1. The minimum of the functional for different meshes.

N 401 801 1601 3201 6401 A*

c 1.1890387 1.2025537 1.2093515 1.2127570 1.2144646 1.216179
min f (c) 14.1697.10 6.2783.10 8 4.0612.10-8 3.3099.10 8 2.9256.10-8

* Projected by a linear Richardson extrapolation from the cases N = 3201 and N = 6401.

11, 15, and 17), and the method can be applied without
any modifications to other solitary wave problems
whereas the spectral technique of Ref. 16 heavily relies
on some particular properties of the specific KS equa-
tion and cannot be extended to the equation considered
in the present paper.

Finally, in Figure 2 we present the solitary wave as
obtained for the original problem for different mesh
sizes. It is once again seen that the homoclinics shape
is much less sensitive to the mesh size than the eigen-
value c for which the respective shape does exist.

To us the results of the present section suffice to
show that a solitary wave does exist, and its shape is
represented rather accurately by the solution N = 6401
given in Figure 2.

Before going further we mention that having the
solution of a multitude of meshes with different spac-
ings provides us with the opportunity to calculate the
shape with second order 0(h2) in space. The latter can
be done by means of the so-called Richardson extrapo-
lation. Let us denote by F" the values of one of the set
functions x, y, z, u obtained with given value h of the
spacing. Let iFl'12 stand for the values in the same
points (the index "i") of the same function but calcu-
lated with spacing h/2. Then

-Di= 2 ¢hI2 - :I} = ¢(X) + 0(h2 ) (23)

provides a second-order approximation to ¢1(x). Re-
spectively,

c = 2c"2 
- C (24)

is the "refined" value of the celerity.
To check the performance of the scheme we applied

the Richardson extrapolation twice. First, from N -
1601 to N = 3201 obtaining the second-order solution
on the mesh N = 1601 and, second, from N = 3201 to
N = 6401 obtaining the said solution on the finer mesh
N = 3201. The comparison between the two second-
order solutions was perfect, less than 0.3% at the time
when the maximum of the solution was of order 0.5.
The accuracy of the extrapolation for c was better than
0.5%. The "ultimate" value of c is provided in Table 1.
It has already been noted that the first four digits of our
result coincide exactly with the value reported in Ref.
16.

It is worth mentioning that this was the cheapest way
to have second-order approximation as the calcula-
tions with different meshes were mandatory because of
the bifurcation nature of the problem. In turn using a
0(h) scheme for a given set of mesh parameters was
much more efficient in the sense of stability and re-
quired a fewer number of iterations. So, when dealing
in the next section with the KSV equation we shall
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Figure 2. The influence of the mesh size N on the calculated
shape of the solitary wave: One extreme case solid line ( ) N
= 401; the other values correspond to N = 801, N = 1601, N =
3201, and the broken line 1--- N = 6401. They are nearly indis-
tinguishable.

present results obtained after applying Richardson's
extrapolation, i.e., results with accuracy 0(h2).

Before closing this section let us emphasize that con-
trary to earlier statements in the literature8' 12.18 the
spectrum is discrete and consists only of one value.

KSV equation-the case of negative 6
After clarifying the issue regarding the existence of a
solitary wave in the KS equation we come back to the
problem of finding the solitary waves for the KSV
equation (3). The two cases, 6 < 0 (negative) and 6 > 0
(positive), are expected to exhibit quite different fea-
tures because of the fact that the solution for u is in fact
a kink (when a homoclinics is sought for v), i.e., the
asymptotic behavior of both infinities is strongly asym-
metrical with an increase of 6 in either the positive or
negative direction.

Guided by the notion that for small but negative 6 the
general appearance of the kink for u (or the hump for v)
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must be similar to KS, we can conclude that the scale
of the solitary wave is not drastically changed. Thus
we can smoothly proceed from the pure KS case to the
KSV equation. For this reason we start with the case of
negative 6, when the corresponding nonlinear term in
equation (3) plays a stabilizing role.

There is no need to give again a description of the
minimization procedure already described. Suffice it to
add that some preliminary work with the algorithm
must be performed for each 8 in order to locate roughly
the interval for the minimum of c. Note that in the
preliminary calculations connected with the rough lo-
cation of the minimum we found also the optimal L and
NS for the given value of 6. The value of the functional
was always of the order 5.10 l-. Results were obtained
for 6 = -0.1, . .. , -0.7, -0.75, -0.8, -0.85.

The most important conclusion from the extensive
set of calculations is that the solitary wave shape
changes when approaching the limit 6 = -0.87, and
for the last value even the wave forerunning front dis-
appears. The gradual evolution of the solution with 6 is
shown in Figures 3 and 4. Correspondingly, Figures 3a
and 4a present the kink, which is the actual solution (an
integral of the solitary wave of Figures 3b and 4b). The
reader should not be confused by the fact that in Ref. 8
an apparently similar disappearance of the forerunner
with increasing 6 takes place. However, 8 is the coeffi-
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cient of the third derivative in space, and hence it
reflects different physical mechanisms.

KSV equation-the case of positive 6

-20 -Is -10 -5 0
a abscissa

-20 -15 -10 -s 0
absci-so

Figure 3. The localized solution for negative%
shape, (b) its derivative. ( ) 8 = 0; (----) 5 =
-0.2; (---) 5 = -0.3; (-) 8 = -0.4.

Let us turn now to the case with positive 6, when the
10 15 corresponding nonlinear term in equation (3) contrib-

utes to destabilizing the solution. It can be shown that
in this case the linearized equation contains the coeffi-
cient (I + 8u + x) for e > 1. This coefficient governs the
properties of the forerunner. The latter decays faster
now with ( -> -, but at the same time its wavelength
becomes shorter, and this makes the numerical prob-
lem even harder because of the increased gradients of
the solution. It goes without saying that the value of L
and the ratio NSIN were being adjusted a posteriori
with increasing 6. There is another difficulty to tackle
for positive 6, and it is again connected with the coeffi-
cient (1 + 6u,+) because it is a functional of the flow,
and as a result a positive feedback occurs in the itera-
tion process, which can lead to instability. This insta-

l ' I bility is easily overcome by means of relaxation.
5 10 15 In Figures 5a and 5b are presented respectively the

results for v and u in the interval 6 E [0, 0.8]. The
values of 5: (a) kink above-discussed tendency of the solution to shorten its
-0.1; (a- ) S - support in the region of positive values of the argument

is clearly seen. In addition the celerity increases with
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the increase of 8, i.e., the solitary wave becomes
swifter. This means that the value of c for a smaller 8 is
already not as convenient an approximation when
moving to higher 8, and therefore a considerable num-
ber of numerical experiments need to be performed to
localize the minimum of f(c) before proceeding with
the golden section minimization procedure.

The above-described tendency is even more con-
spicuous in Figures 6a and 6b, where the range of the
main governing parameter is 8 C [1.0, 1.5].

The dependence of c and 8 is summarized in Figure
7. Unfortunately, it is not obvious what kind of ana-
lytic expression for the correlation between c and 8 is
to be expected. What is obvious is that c increases
faster than an exponent for 8 > 0 and decreases slower
than an exponent for 8 < 0.

Conclusion

In this paper the problem of localized solutions
(solitary waves) to a generalization of the Kuramoto-
Sivashinky equation (called the KSV equation) is
treated numerically by means of a method of varia-
tional imbedding. The convergence of the difference
solution to the solution of the differential equation is
proved by means of mandatory numerical experiments
with different mesh sizes, "actual infinity", etc. The

Figure 6. The localized solution for positive values of 6: (a) kink
shape, (b) its derivative. ( ) 6 = 1.0; (----) 6 = 1.2; (-0-) 6 =
1.4; (---) 5 = 1.5.
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accuracy of the solution is improved by means of Rich-
ardson extrapolation.

First, the technique is applied to the problem of
homoclinic solutions of the original KS equation. It
appears that a single-hump homoclinics exists only for
one value of the celerity c* = 1.216, which is in perfect
agreement with the results of other authors. Then the
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kink solutions of the KSV equation are obtained for
different values of an additional governing parameter 8
(note that for 8 = 0 the spatial derivative of the kink
solution of the KSV equation coincides with the
homoclinics of the KS equation). For each 8 a single
eigenvalue c* for the celerity is obtained. The corre-
lation between 8 and c* is also graphically presented.

Our interest in the nonlinear term with the coeffi-
cient 8 in equation (1) is because this term has some
physical content that changes with its sign! Indeed it
can change sign according to the effective gravity level,
and thus equation (1) accounts for both ground and
space (microgravity) conditions. When 8 < 0 (negative)
this term plays a stabilizing role whereas if 8 > 0
(positive) it tends to destabilize the surface. This is
confirmed by our numerical results. They show that for
negative 8 the wavy forerunner gradually disappears
while in the opposite case of positive 8 the solitary
wave becomes swifter, and the forerunner becomes
sharper. For a rigorous discussion of the initial value
problem and asymptotic low dimensional behavior of
equation (1), see Ref. 19.
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