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Fig. 15. The inelastic collision for two significantly differ­
ent large phase speeds Cl = 5, C2 = -2: (a) shape of wave
function; (b) trajectories of centers of solitons.
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Fig. 13. Symmetric RLWE collision for very large super­
sonic phase velocities Cl = -C2 = 5: (a) shape of wave func­
tion; (b) trajectories of centers of solitons.

Fig. 14. Asymmetric inelastic collision for large phase speeds
Cl = 4, C2 = -3: (a) shape of wave function; (b) trajectories
of centers of solitons.
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features of systems whose energy functional is not
positive definite.

The first numerical results revealing the inelas­
tic properties of RLWE solitons were reported by
Bogolubsky [1977] who tackled a case roughly cor­
responding to our Fig. 9 by means of an explicit
scheme. The finding of Bogolubsky [1977] was
verified by Iskander & Jain [1980], whose scheme
was already implicit but still not conserving. The
lack of conservativeness of the schemes of these cited
works left the door open for suspicions that the in­
elasticity of collision could be a numerical artifact.
Because of conservation of energy we can claim that
our results prove the fact that the RLWE solitons
behave inelastically during their collisions.

An asymmetric evolution is presented in Fig. 11
for two different phase velocities Cl = 1.6 and C2 =
1.2, which are bellow the threshold of nonlinear
blow-up.

The stability domain of our scheme significantly
exceeds the schemes of Bogolubsky [1977], Iskan­
der & Jain [1980] and we were able to proceed in
a region of rather strongly pronounced inelasticity.
The inelastic portion of the signal that appears af­
ter the interaction increases rapidly with the in­
crease of the supersonic phase speeds of the solitons.
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Table 2. Comparison for the Phase Shift for the RLWE (f3 > 0).

Cl 81 (9) 81 C2 (9) 81 (num.) C2 82 (9) 82Cl (9) 82 (nUll.)

1.2 0.9808 1.177 1.09 -1.2 0.9808 1.177 1.09

1.5 0.8773 1.316 1.18 -1.5 0.8773 1.316 1.18

2. 0.6805 1.361 1.24 -2. 0.6805 1.361 1.24

5. 0.2768 1.384 1.273 -5. 0.2768 1.384 1.273

1.6 0.6020 0.723 0.6 -1.2 1.133 1.813 1.84

4. 0.3245 0.9735 0.87 -3. 0.4444 1.778 1.66

5. 0.1689 0.3378 0.31 -2. 0.4777 2.389 2.44

Figure 12 provides an illustration of this statement
for C1 = C2 = 2. The phase shift is now conspic­
uous although it is not clear whether it could be
safely interpreted physically, since the calculations
are blown-up promptly after the maximum of the
residual signal exceeds the amplitude of the origi­
nal seches. Anyway, within the time interval of the
existence of the solution we calculated the phase
shift (see the lower figure in Fig. 12). It is interest­
ing to look at the dependence of the phase shift on
the phase velocities. For this reason we investigated
also the case C1 = C2 = 5 as presented in Fig. 13.
As it should have been expected, the value of the
phase shift increases with the increase of the phase
velocities of the solitons (qualitatively in agreement
with formula (9).

First we discuss the result in Fig. 11 where the
phase shift can be defined for each time stage since
the calculations are stable and long-time evolution
is possible.

In order to examine more closely the phase shift,
two more cases with different phase speeds (Fig. 14
and Fig. 15) are considered. Results are presented
in Table 2. It is seen that there is no quantita­
tive agreement with the formula of Toda & Wa­
dati. It is hardly surprising since RLWE corre­
sponds to OBE with a dispersion coefficient that
is decreased c times. There is a conspicuous rela­
tion, however, between the phase shifts for OBE
(9) and RLWE. To this testify the third and sev­
enth columns in Table 2. If one scales the result
for Sl with C2 and S2 with C1 then there is con­
sistent, good agreement with the numerical results
of our study. The above "experimental correla­
tion" fits very well all the cases of different phase
velocities considered here. We deem the qualita­
tive agreement for the phase shifts, as well as the
very existence of the mentioned relationship, as a

significant sign of the universality for the soliton
dynamics within the Boussinesq Paradigm.

Note that the results presented in Figs. 14 and
15 are valid only for finite times and were presented
here mostly for completeness and for the sake of
examination of the phase shift.

6. Concluding Remarks

In the present work we have studied the mathemati­
cal objects called Boussinesq Equations (Boussinesq
Paradigm). Two improved versions of the Boussi­
nesq equation [called the Proper Boussinesq Equa­
tion (PBE) and Regularized Long Wave Equation
(RLWE)] have been considered which are well-posed
(correct in the sense of Hadamard) as an initial­
value problem. Fully implicit difference schemes
have been developed representing, strictly on differ­
ence level, the conservation laws for the mass and
the pseudoenergy of the wave and the balance law
for the pseudomomentum. The head-on collision
of seches (Boussinesq solitons) has been thoroughly
investigated. In PBE they are subsonic and of neg­
ative amplitude, while in the RLWE they are su­
personic and positive.

The negative seches (the depressions) of
PBE are subject to positive phase shift (phase lag)
after they re-emerge from the collision but they re­
tain their shape perfectly and no residual signals
are detected. The numerically obtained phase lag
is in very good quantitative agreement with the
analytical prediction based on the two-soliton
solution.

Our simulations reveal that the subsonic humps
of positive amplitude are not stable and gradually
transform into oscillatory pulses whose supports in­
crease with time and whose amplitudes decrease
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