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Table 2. Comparison for the Phase Shift for the RLWE (8 > 0).

c1 51 (9) s1cz (9) s1 (num.) ca 52 (9) s2¢1 (9) s2 (num.)
1.2 0.9808 1.177 1.09 —-1.2 0.9808 1.177 1.09
1.5 0.8773 1.316 1.18 -1.5 0.8773 1.316 1.18

2. 0.6805 1.361 1.24 -2. 0.6805 1.361 1.24

5. 0.2768 1.384 1.273 -3. 0.2768 1.384 1.273
1.6 0.6020 0.723 0.6 —-1.2 1.133 1.813 1.84

4. 0.3245 0.9735 0.87 -3. 0.4444 1.778 1.66

5. 0.1689 0.3378 0.31 —-2. 0.4777 2.389 2.44

Figure 12 provides an illustration of this statement
for ¢; = ¢z = 2. The phase shift is now conspic-
uous although it is not clear whether it could be
safely interpreted physically, since the calculations
are blown-up promptly after the maximum of the
residual signal exceeds the amplitude of the origi-
nal seches. Anyway, within the time interval of the
existence of the solution we calculated the phase
shift (see the lower figure in Fig. 12). It is interest-
ing to look at the dependence of the phase shift on
the phase velocities. For this reason we investigated
also the case ¢; = ¢ = 5 as presented in Fig. 13.
As it should have been expected, the value of the
phase shift increases with the increase of the phase
velocities of the solitons (qualitatively in agreement
with formula (9).

First we discuss the result in Fig. 11 where the
phase shift can be defined for each time stage since
the calculations are stable and long-time evolution
is possible.

In order to examine more closely the phase shift,
two more cases with different phase speeds (Fig. 14
and Fig. 15) are considered. Results are presented
in Table 2. It is seen that there is no quantita-
tive agreement with the formula of Toda & Wa-
dati. It is hardly surprising since RLWE corre-
sponds to OBE with a dispersion coefficient that
is decreased c times. There is a conspicuous rela-
tion, however, between the phase shifts for OBE
(9) and RLWE. To this testify the third and sev-
enth columns in Table 2. If one scales the result
for s; with ¢y and so with ¢; then there is con-
sistent, good agreement with the numerical results
of our study. The above “experimental correla-
tion” fits very well all the cases of different phase
velocities considered here. We deem the qualita-
tive agreement for the phase shifts, as well as the
very existence of the mentioned relationship, as a

significant sign of the universality for the soliton
dynamics within the Boussinesq Paradigm.

Note that the results presented in Figs. 14 and
15 are valid only for finite times and were presented
here mostly for completeness and for the sake of
examination of the phase shift.

6. Concluding Remarks

In the present work we have studied the mathemati-
cal objects called Boussinesq Equations (Boussinesq
Paradigm). Two improved versions of the Boussi-
nesq equation [called the Proper Bohssinesq Equa-
tion (PBE) and Regularized Long Wave Equation
(RLWE)] have been considered which are well-posed
(correct in the sense of Hadamard) as an initial-
value problem. Fully implicit difference schemes
have been developed representing, strictly on differ-
ence level, the conservation laws for the mass and
the pseudoenergy of the wave and the balance law
for the pseudomomentum. The head-on collision
of seches (Boussinesq solitons) has been thoroughly
investigated. In PBE they are subsonic and of neg-
ative amplitude, while in the RLWE they are su-
personic and positive.

The negative seches (the depressions) of
PBE are subject to positive phase shift (phase lag)
after they re-emerge from the collision but they re-
tain their shape perfectly and no residual signals
are detected. The numerically obtained phase lag
is in very good quantitative agreement with the
analytical prediction based on the two-soliton
solution.

Our simulations reveal that the subsonic humps
of positive amplitude are not stable and gradually
transform into osciilatory pulses whose supports in-
crease with time and whose amplitudes decrease
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at the time when the total pseudoenergy is con-
served. Despite of their “aging” (which is felt on a
time interval that is several times larger than the
time-scale of the collision) our calculations suffice
to claim these pulses also as solitons because of the
conservation of energy during the collision.

For supersonic phase velocities the collision of
Boussinesq solitons has been investigated on the
basis of RLWE. Our numerical experiments have
shown that the apparently elastic system governed
by RLWE exhibits inelastic properties of collisions
of solitary waves of the sech type (Boussinesq soli-
tons). In the weakly nonlinear limit, when the
seches move with almost the characteristic speed,
the interaction is perfectly elastic and, as it should
have been expected, no appreciable phase shift is
detected within the order O(1). For larger phase
velocities the collision becomes conspicuously
inelastic, and not only significant negative phase
shift is experienced by the solitons, but also a post-
collision residual signal arises at the collision site.
The residual signal is of sizable amplitude, but of
negligible pseudoenergy. Its evolution is tracked nu-
merically for very large times and it appears that
a breather is formed at the post-collision site. The
breather constantly feeds two ever-expanding pulses
of “Big-Bang” type. The phase shift obtained nu-
merically for RLWE is in qualitative agreement with
the analytical prediction for the original (improper)
Boussinesq equation.

The thresholds for a nonlinear blow-up are iden-
tified numerically for both PBE and RLWE.

Finally, let us point out that some of our results
fit rather well with the experimental findings re-
cently reported in the literature [Linde et al., 1993a,
1993b]. Velarde et al. [1994a, 1994b]. It has been
found that although solitary waves can be created
by an instability and they are dissipative traveling
localized structures, yet for the time scale of the ex-
periment (what we may call a very long transient
time interval) the solitary waves and the crests of
(periodic) wave trains do interact like dissipation-
less Boussinesq seches (see also Christov & Velarde
[1994]).
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