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Abstract 
Movatived by a problem of the dynamical elasticity of crystals with micro- 
structure, a conservative numerical scheme is employed to study the very 
long time evolution and interaction of soliton-like solutions in systems of 
Coupled Nonlinear Schrodinger Equations. Head-on collision and over- 
taking receive special attention. The results obtained demonstrate the 
inelasticity (change of polarization) of the interaction even for initially cir- 
cularly polarized components. Thus it may be said that the interactions in 
such systems break the symmetry of the input. 

1. Introduction 
Many problems of mathematical physics, condensed-matter 
physics, mechanics of solids or fluids, and biological struc- 
tures lead to the consideration of systems of partial differen- 
tial equations which comprise two nonlinearly coupled 
(cubic) Schrodinger (NLS) equations in the following nor- 
malized form 

where 4 and 1(1 are complex-valued (x, +dependent scalars, i 
is the imaginary unit, and B, a1 and a2 are real scalars. The 
writing (1) exhibits a rather high symmetry between the two 
equations governing a two-degree of freedom system as 
the same coefficients for self-nonlinearities and mutual non- 
linear couplings are considered. The same holds true of 
the dispersion coefficient B. In addition, as the same time 
derivative occurs in both components of the system (l), this 
means that the two corresponding linear modes were 
assumed to have the same characteristic velocities [i.e. the 
reduced time t in (1) was introduced in both equations using 
the same characteristic coordinate]. Such a situation will 
certainly prevail in optics and isotropic elasticity for two 
circularly polarized modes of two transverse shear modes, 
respectively. As a matter of fact, system (1) is canonical in 
many physical systems such as in nonlinear pulse propaga- 

tion in optical fibers [l-41, in nonlinear wave interactions in 
discrete transmission lines [5-71, in antiferromagnetic 
chains [8], in plasma physics (ion-acoustic modes) [9, lo], 
in molecular structures of the D N A  type in which a system 
of coupled sine-Gordon equations is shown to yield (1) after 
reduction to the case of small-amplitude modulated mono- 
chromatic motions [ 113, in shear-horizontal nonlinear wave 
propagation in superimposed layers [12], and more gener- 
ally in nonlinear wave interactions involving two dispersive 
modes with equal group velocity [13, 141. Closer to our 
usual interest in the mechanics of deformable solids and 
crystals is the appearance of systems such as (1) for coupled 
rotational modes in elastic Cosserat continua (also called 
micropolar continua, i.e., elastic crystals with a rigidly rotat- 
ing microstructure) [l5, 161 where, indeed, the two linear 
modes do have the same velocity. However, the application 
of (1) would be questionable in another case of great interest 
which concerns the nonlinear coupling between surface 
shear-horizontal and Rayleigh modes in elasticity with cap- 
illarity effects (i.e. dispersion) included [17] as, clearly, the 
correponding two linear modes have different group velo- 
cities. 

What is to be retained from the wealth of applications of 
(1) is its canonical structure. From the mathematical point 
of view, the complete integrability of (1) has been established 
by Zakharov and Schulman [lS] whenever a2 = 0. In each 
physical application this contraint materializes in a specific 
relationship to be satisfied jointly by the frequency and 
wave-number of the carrier wave whose two-component 
envelope is governed by (l), hence very peculiar points of 
the working regime for the carrier (along the linear disper- 
sion relation of the physical system). In practice, however, 
one cannot expect to be in such a precise regime (if it exists 
at all) so that the constraint a2 = 0 must be relaxed, from 
which there follows the lack of complete integrability of the 
system in general. But it is still of interest in more realistic 
situations to look at the solitonic behaviour, in particular 
during collision or overtaking of waves as the system may 
not be too “bad”, i.e., it may be somewhat nearly integrable 
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[14]. This is why the present work is devoted to the numeri- 
cal simulation of collisions of solitary waves which are solu- 
tions of (1). In order to be closer to the aysmptotic 
boundary conditions we consider in our numerical study 
large enough spatial intervals x E [-L,, L2] at the borders 
of which the following trivial conditions are prescribed 

J I = 4 = 0  for x = - L 1 , L 2 .  

2. Soliton solutions 
The system under consideration is in a sense not strongly 
coupled and polarized solutions of type of JI # 0, 4 = 0, or 
JI = 0, 4 # 0 (which are in fact solutions to the decoupled 
system) do exist for the full system for arbitrary values of 
parameters. Yet the coupling present here is strong enough 
not to allow for the existence of envelopes with different 
carrier frequencies for the two unknown functions d, and JI. 
In this instance, the envelope solitons should always be pol- 
arized (Parker et al. - for the coinage) in the sense that 
JI = C 4 ,  where C is generally a complex constant. When 
C = 0 one has what Parker et al. call circular polarization 
and for C = exp 2iv - linear polarization. In both cases, the 
system reduces to a single NLS equation for which the one- 
and two-solition solutions are well known [ 191. Our main 
purpose is to investigate collisions of initially polarized solu- 
tions and to understand the process of exciting of solutions 
with polarization different than the original. In fact a bifur- 
cation takes place and alongside with the solution of orig- 
inal symmetry another solution occurs which is of different 
symmetry. The latter appears to be more stable and yields 
breaking of symmetry. 

A “one-soliton” envelope solution of (1) is known in the 
form 

$, d, = a exp (io) exp {i[+c(x - ct) + n t ] }  

x sech [“‘“Ji“’] 
where 

a’ = 2(n - $2) > O 
and 8 is the phase. Note that the coefficient a is the same for 
both functions d, and JI by virtue of our choice a ,  = a2 = 
0.25. In the present work we also restrict ourselves to inter- 
actions of solitons of the same phase, and without loss in 
the generality we take 8, = 8, = 0. 

We shall reasonably assume that the initial conditions of 
our simulations will indeed consist of two sufficiently set 
apart solitary-wave solutions (2). The difference scheme 
sketched out in Section 4 is especially devised for the 
purpose with due attention to the conservative features of 
this scheme for the coupled evolution system. The results 
are presented and discussed in Section 5 and illustrated by 
many graphs. The inelasticity of the interactions observed is 
not an artifact of the numerical scheme. This inelasticity is 
rather conspicuous for the selected values of a,, a2 and pre- 
cludes any nice “nearly integrable” behaviour. This some- 
what contrasts with the pictures obtained by Parker, 
Newboult and Faulkner [3, 41 using explicit computational 
schemes for a system in which d, and $ are none other than 
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the complex amplitudes of two circularly polarized modes, 
whereas our conclusion for general 4 and JI coincides with 
Hirota’s analysis [19] - see Ref. [14]. 

3. Hamiltonian representation 
First we introduce the notations 

4 = d x ,  t )  + ir(x, 0, JI = q(x, t )  + is(x, t), (3) 
and then the original system is transformed to 

rt  = /%XI + + r2)  + (ai  + 2a2Kq2 + S 2 ) h  

- p r  = firxx + [ a l ( p 2  + r2)  + (a ,  + 2a2Xq2+s2)]r. 
and 

sr = hXx + + s2) + (al + 2a2xp2 + r2)1q, 

-qt = Bszz + [a1(q2 + s2) + (a ,  + 2a2Xp2 + r2)]s. 

(4) 

( 5 )  
It is easily shown that the quantity called mass or “total 

number of particles” is conserved for each of the modes JI, 
d,, namely 

dx = 0. (6) 
* p z  + r2 * q 2  + s2 dx = 0, 

i.e. due to the “weak” coupling of the system, the functions 
JI and d, are allowed to have separate conservation laws. It 
is not the case, however, with the energy of the system, 
which is a single property for both equations, namely 

+ 2(a, + 2a2)(p2 + r2)(s2 + q2)  

- B(p;  + q; + r; + s:)] dx = 0, (7) 
which is not a positive definite function (as usually for the 
NLS). 

4. Difference scheme 

Consider a uniform mesh in the interval x E [ - L,, L2] 

Ll + L2 xi = ( i  - l)h, h = - N - 1  ’ 
where N is the total number of grid points in the interval 
under consideration. 

In order to treat the very-long-time evolution of the soli- 
tons, we construct here a conservative scheme, reflecting the 
first two conservation laws for the system under consider- 
ation (mass and energy). 

$ + I  -s; /3 
= - [q;:; - 2q;+’ + 4;;; 

T 2h2 
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that 

max ( N ,  , N ,  , N ,  , N,) G E ~. 

where s;+' + $ 
4 

["' + 1. ;;+:;; 1. k - 1 1  

+ $+': + fl- 1 - 2s; + s;+ 13 + 
x {41C(qi n + l  2 N ,  = max , etc. 

i 
+ (4;)' + (s;+')' + ($)21 

+ (a1 + ?a21 

x [ ( P ; + ~ ) ~  + ( P ; ) ~  + 
For the calculations of double precision we require 

E = lo-''. After the iterations converge, one obtains in fact 
a time step of the nonlinear scheme which has the desired 
property of conservativeness. 

+ ( @ I } .  (9) 
A similar pair of difference equations holds for the func- 

tions p, r. 

5. Results and discussion 4.1. Conservative properties 
The conservation of the masses of modes (number of 
particles) are easily seen to be represented by our scheme. 
After some algebra is is shown that the difference approx- 
imation of energy 

+ (" -;:- ' ) ) 2  + (e -he- 9 2 1  

1 N-1 + - C {a[($+')' + (q;+1)2]2 

+ al[(p;+')' + ( r ; + 1 ) 2 ] 2  

+ 2(a1 +  CY^)[($+')^ + (q;+1)2] 

x [(pr+1)2 + (r;+')']}  (10) 

4 i = 2  

is conserved in the sense that P+' = 8". 

4.2. The linearization 
The above described conservative scheme is nonlinear and 
requires linearization. However, any change in the scheme 
would spoil the conservative properties. Then the only 
option is to introduce an iterative procedure (see [20]) and 
to conduct it until convergence, i.e., we substitute the sought 
values at the (n  + 1)-st stage by their approximations 
according to Newton's quasi-linearization 

1 . 9 3  % 3 ( p n + l . k - 1  ) P  2 n f 1 . k  - 2(pn+lsk+l  ) , etc. 
( p n + l , k ) 2  2 p n + l , k - 1  P n + l , k  - 2(pn+lvk-l 1 ', etc. 

( p n  + 1, k ) l q n +  1 .  k 

) + 2 p n + l , k p n + l . k - 1  n + l , k - l  n + l , k - l  2 n + l , k  4 = (P 
, etc. - q p n + l . k - l  2 n + l . k - 1  1 4  

p n + l , k q n + l . k  x p n + l . k - l  n + l , k  4 

4 4 , etc. + p n + l , k  n + l , k - l  - f + l , k - l  n + l , k - 1  

Beginning from the initial conditions 
p n + ' - O  pn,  etc. 

the iterations are conducted until convergence, in the sense 

In our computations we have taken different values of al, 
a2 . The significant interaction occurs for small al and large 
a2 but this case has little physical significance. For the appli- 
cations envisaged (see [l5, 16]), at most, the said coefficients 
can be equal. As a rule a1 dominates over a2.  So we only 
present here the results obtained with equal coefficients. The 
obvious renormalization is a1 + a2 = 0.5 which would lead 
to unit value of the coefficient of the nonlinear term if one 
takes 4 = ((I. Hence a1 = a2 = 0.25 is the case considered in 
the present paper. 

As mentioned above, we concern ourselves with the soli- 
tary wave solutions. In order to investigate the interaction 
properties we compose the initial condition by means of 
superimposing two solitons of type (2). It is clear that this 
allows a vast room for maneuvering and it is impossible to 
track the evolution of all the interesting initial configu- 
rations of solitons. In order to simplify the task we consider 
only the "pure case" when the initial state is circularly pol- 
arized, in the sense that one of the solitons (the left one in 
the figures attached) has nontrivial value for function ((I and 
trivial zero for 4. It is shown in the upper box of the figures 
presented. The right soliton is 4 = 0 and ((I # 0 and is 
depicted in the lower box of the respective figure. If there is 
to be inelasticity it would be much more conspicuous here 
that in the case treated by Parker et al. 

The first to undergo investigation was the head-on colli- 
sion. The important observation here is that for moderate 
and large phase velocities of the solitons, the time of inter- 
action ("the cross section") is too short to allow excitation of 
coupled waves of considerable amplitude. The interaction is 
observable for sufficiently low phase velocities. Due to the 
nature of the envelope solitons, small phase speeds produce 
relatively short length scales of the soliton, in the sense that 
the support of the localized solution encompasses only frac- 
tions of a period of the carrier frequency. Then one is to 
consider also low carrier frequencies in order to span at 
least one period. This is exactly the case of head-on collision 
presented in the sequence of pictures in Fig. l(a)-(f). Two 
polarized waves of equal carrier frequencies nlcft  = nrigh, = 
0.05 and equal celerities clef, = C,ight are considered. It 
follows automatically that their amplitudes are also equal. 
We clearly see the scenario of symmetry breaking - how the 
coupled wave is gradually excited during the interaction and 
carried away with its mate. The interaction, however, has 
further inelastic features and some additional vibrations are 
excited apart from the purely localized waves. This is not an 
artifact of the numerical scheme, because the latter is strictly 
conservative. It is not an artifact of the approximation 
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either, because we have checked the results for different 
mesh sizes (different resolutions). Fig. l ( f )  also shows the 
interaction of the waves with the boundaries. Note that in 
the last two figures, l(e), (f), the horizontal scale has been 
changed in order to exhibit the whole pattern of the solu- 
tion in the same box. 

The over-taking collisions are more interesting, because 
they allow sufficient time (cross section) of interaction for 
the coupled waves to develop before the main waves finally 
separate from each other. It is clear that the phase velocities 
must be different in the overtaking collisions. 

First we investigate the case when the waves have the 
same carrier frequency [see Figs 2(a)-(f)] but different 
amplitudes. Naturally, the faster wave has smaller ampli- 
tude. As it should have been expected, the wave of smaller 
amplitude suffers more from the interaction and larger part 
of its mass goes into the excited conjugated pattern. 

It is interesting to trace in Figs 3(a)-(f) the case of equal 
amplitudes when the faster wave has larger carrier fre- 
quency. It turns out that the frequency does not really 
matter and the excited waves are of equal amplitudes, i.e. 
both the original waves are equally affected by the collision. 

Figure 4 presents the overtaking collision of two waves of 
different frequencies and slightly different amplitudes. The 
solition of smaller amplitude actually becomes larger after 
the collision and slightly slower. This is the same effect as 
the one mentioned in [3, 41. So, here the interaction is even 
more inelastic not only exhibiting some residual signals but 
also transforming the original signals. Once again, we 
remind the reader that the masses of the two waves and the 
total energy remain strictly constant in our calculations. 

So far, we have shown that there is an inelastic behaviour 
(change of polarization) even for the case of circular polar- 
ization. In fact, Parker et al. did not actually treat this case 
numerically. They just mentioned that it is reduced to a 
single NLS. That is true, but the solution of the coupled 
system which also happens to be a solution to the single 
NLS is unstable and could not persist. After the collision it 

yields a solution with more complicated polarization (as 
shown in our figures). 
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