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NUMERICAL APPROACH TO INVISCID SEPARATED FLOWS
WITH INFINITELY-LONG CUSP-ENDED STAGNATION ZONE

C. I. Christov and M. D. Todorov

1. Introduction

The separated flows attracted the attention as early as in the Seventies of the previous
century. Helmholtz [9] posed the problem as matching between a potential flow and a
stagnant zone at priory unknown free boundaries which are tangential discontinuities and
where the balance of normal stresses (the pressure) holds. Krichhoff [12] came up with the
first solution for the ideal jet flowing out from a hole when the detachment points were
known in advance. For blunt bodies an additional condition for smooth separation (called
now Brillouin-Villat condition [1, 15]) is to be satisfied. The first approximate solution for
a blunt body (the circular cylinder) was provided by Brodetsky [2] who came up with a
parabolic expanding at infinity shape of the stagnation zone. To a reasonable degree this
solution was qualitatively confirmed by the Navier-Stokes calculations [11, 7, §].

Another Helmholtz flow radically different from the Brodetsky flow takes place when
the breadth of the stagnation zone decreases at infinity forming an infinite cusp. Glimpses
of this kind of flow were first encountered in the direct difference solutions [10, 13] but due
to the limitation of computers the shape of the zone was not conclusive and later on the
model was virtually abandoned in the literature. We also found this cusp-ended stagnation
zones [3, 4, 5] by means of difference scheme and confirmed by integral-method calculations
[14].

The gist of our approach is to make use of two different coordinate systems: the ubiqui-
tous polar coordinate system (turning out to be ineffective for the case of infinite stagnation
zones extending far away from the rear end of body) and the parabolic coordinate system
the latter being topologically more suited for solving Laplace equation outside infinitely long
stagnation zones. We initiate the calculations in polar coordinates switching to parabolic
coordinates after the stagnation zone has fairly well developed and has become long enough.

In our previous works we solved the equation for shape function in parabolic coordi-
nates. Although this algorithm turned out to work well for Brodetsky flow, it was not very
convenient for cusp-ended stagnation zones leading to hard to tackle numerical instabilities.
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Here we use the parabolic coordinates for Laplace equation only and treat the shape
function exclusively in terms of the polar coordinates where the governing equation is sta-
ble. At each global iteration the solution for stream function is returned from parabolic to
cylindrical coordinates and then used in the equation for the shape function.

2. Posing the problem

Consider the steady inviscid flow past a circle — the cross section of an infinitely long
circular cylinder. The direction of the flow coincides with the line § = 0,7 of the polar
coordinates and the leading stagnation point of the flow is situated in the point 6 = .
For the sake of convenience we recall here the connection between parabolic and Cartesian
coordinates

1
m:§(72—02), c>0; y=o0T, —00>T>00.
Dimensionless variables are introduced as follows
")b r D — Pe Poo — Pe
I I _ _ _ ! _ ! _
¢——LU°°, T_Z’ q—%pU0207 a—\/fa, T—\/ZT, K= %onzo, (2.1)

where L is the characteristic length of the body (2a for a cylinder of radius a), Uy — velocity
of the undisturbed flow; p. — the pressure inside the stagnation zone; p,, — the pressure at
infinity. Without fear of confusion the primes will be omitted henceforth.

The parameter k is called cavitation number. For flows with stagnation zones it is
trivially equal to zero since the pressure must be continuous at infinity and hence p. = po.
For cavitation problems x can assume nontrivial values since p. is not forced to be equal
t0 Poo. Let us mention in passing that in general the pressure in the stagnation zone can
also be a function of the longitudinal variable accounting thus for the interaction with the
boundary layer.

2.1. Coordinate systems
In terms of the two coordinate systems (cylindrical and parabolic) Laplace equation
for the stream function function v reads:
1

o2 4+ 712

Yrr + %"/Jr + %"/100 =0, or (Yoo +Prr) =0 (2.2)

The undisturbed uniform flow at infinity is given by
~ oTUq . (2.3)

Y| oo " U sing or

On the combined surface “body+stagnation zone” hold two conditions. The first con-
dition secures that the said boundary is a stream line (say of number “zero”)

P(R(6),0) =0, § € [0,2r] or o(S(r),7)=0, T € [—00,00], (2.4)

where R(0), S(7) are the shape functions of the total boundary in polar or parabolic coordi-
nates, respectively. Here and henceforth we use the notation I'; for the portion of boundary
representing the rigid body (the cylinder) and I'y — for the free streamline.
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Let 6" and 7* be the magnitudes of the independent coordinates for which the detach-
ment of flow occurs. As far as we consider only the case when the stagnation zone is situated
behind the body then the portion of I'y which describes the free line for the “upper part” of
the flow 1s defined as 0 < 8 < 8 or 7 > 7., respectively. The “lower part” is described by
the inequalities §f < 8 < 27 and 7 < —7;". On T'; the shape function R() is unknown and
it 1s to be implicitly identified from Bernoulli integral with the pressure equal to a constant
(say, p.) which is the second condition holding on the free boundary. For the two coordinate
systems one gets the following equations for shape functions R(6) or S(7):

2 2 2
_I_
lq LY ¢3] =1, or lq + L‘; ¢Z)] =1, (2.5)
2
's »=R(6) o +T o=5(7)
0<6<86;,, T, <T<00.

For symmetric bodies it is sufficient to solve the boundary value problem (2.2), (2.3),
(2.4), (2.5) in one of the halfs of the flow (say, the upper half) and additional conditions are
added

Oy
e 0 = —_— =

38 0, 0,m or 5
In the general case of non-symmetric bodies the problem must be solved in the entire
plane which implies that (2.5) must be imposed also on the other free line (the line which

0,7=0. (2.6)

lies in the lower semi-plane), if it exists.

2.2. Scaled Variables

The outlined boundary value problem is very inconvenient for numerical treatment
mainly because of two reasons. The first is that the boundary lines are not coordinate lines.
The second is that the shape function of the stagnation zone must be implicitly identified
from the additional boundary condition (2.5). A way to overcome these difficulties is to scale
the independent variable (6 or 7) by the shape function R(6) or S(7), respectively. Such a
manipulation renders the original physical domain under consideration into a region with
fixed boundaries, the latter being coordinate lines. In addition the Bernoulli integral becomes
an explicit equation for the shape function of the free boundary. Scaling the independent
variable proved very efficient in numerical treatment of inviscid or viscous flows with free
boundaries (see, e.g., [6]).

We define after [3, 4, 5] new independent coordinates:

n=rR(6), n=o0—S(r)

in place of the polar radius » or the parabolic coordinate o, respectively.
In the virtue of these transformations of boundary I' = I'; + I'; the region becomes a
semi-infinite strip in bothe coordinate systems

[1<p<o0, 0<6<T7] or 0<p<oo, 0<T<0o0].

We treat the two coordinate systems in a uniform way denoting §¢ = § or £ = 7
depending on the particular case under consideration. In terms of the new coordinates (7, £),
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the stream function is a compound function 1&(17, 0) = ¢¥(r(n,£),€) or 1&(17, ) = ¢¥(o(n,§),§)

but in what follows we drop the “tilde” without fear of confusion. The Laplace equation
takes then the form

@y — 2bne + Yee + dipy = 0 (2.7)
where aznz[l—l—(%)z], bzn%’, d:n[ R”—I-2( )2];
or

a=1+8% b=5, d=-5".

In fact the “relative” function % is used

P(n,0) = 9(n,0) —nR(8)sin b,  (n,7) = ¢(n,7) = [n+ S(r)]r

which is obviously a solution to eq.(2.7) and which we loosely call stream function. The
asymptotic boundary condition then becomes

) =0 2.8

¢‘n =7oo ot ¢‘n=nm,f=ifm ’ ( )

while the non-flux condition on I' transforms as follows
ﬂnzl = —nR(0)sin 0 or ﬂnzo =-5(7)r. (2.9)

Thus eqs.(2.7), (2.8), (2.9) define a well posed boundary value problem provided that
functions R(6) and S(7) are known. On the other hand in the portion I'y of the boundary
(where these functions are unknown) they can be evaluated from the Bernoulli integral (2.5)
which now becomes an equation for the shape function

2 _ 2
R? + R? 1—|—S’2 (9’90

——— | = 4+ R(0)sinf| =1, or | +7| =1, 2.10

R4 817 et ( ) ] SZ _I_TZ 877 =0 ( )
0<0<6;, T, <1< o00.

3. Forces Exerted on the body

The presence of a stagnation zone breaks the symmetry of the integral for the normal
stresses and hence D’Alembert paradox ceases to exist, i.e. the force exerted from the flow
upon the body is no more equal to zero. Denote by the outward normal vector to the
contour I'. Then the force acting upon the contour is given by

= —f pds = —f (g+pe)ds = palUZ[Co+Cyl, (3.1)

where C, and C, are the dimensionless drag coeflicient and the lifting force. Note that the
boundary I (rigid or free) is defined by the equation { — F(§) = 0, where { = r, F(£) = R(0)
or ( =0, F(¢) = S(7). The unit vector normal to the line I' and the elementary length
along I' are expressed as

- (\/;T F\I/(f_);) [911 * %l _’% ds = dé\/ g F*(€) + 22, (3.2)

where g1 =1,9220 = R(9), or g11 = VS2+72,gss = V52472 (3.3)
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are the components of the metric tensor in the two coordinate systems. Respectively , =
ry ¢ =80Or ¢ =4, ¢ =, are the unit vectors tangential to the coordinate lines. These are
connected to the Cartesian basis vectors and as follows

1 (8m 8y) 1 ((91: 8y)
= [=+Z= and = ——+ =2,
Vv 922 o¢ ¢ VI \0¢ 8¢
where z and y are the Cartesian coordinates. Upon substituting the above relations into

(3.1) and after obvious manipulations we obtain for the drag and lifting-force coefficients the
following expression

Co=2 [qR(6)cos b + R'(6)sin8]dd  C, =2 / "a[S(7) + §'(r)r] dr

ax 0

“ or . (3.4)
C, = 2/0q [R(6)sin 6 — R'(0)cos6]df  C, = 2/ q[r — S'()S)dr .

- 0

where the dimensionless pressure is given by

R*+R”
- RY

o
On =0

0%

2
g=1 A + R(0)sin 0] or g=1-— (3.5)

n=1

4. Difference Scheme and Algorithm
4.1. A Splitting scheme for Laplace equation

By means of the scaled coordinates the physical rigion under consideration has been trans-
formed into a computational domain with fixed boundaries. This radically simplifies the
implementation of the difference scheme enabling one to use the economic schemes of co-
ordinate splitting. The only numerical difficulty that remains is connected with the fact
that the domain is infinite. For the purposes of the numerical solution, the domain must be
reduced to finite one after appropriately choosing the “actual infinities”. In the case of polar
coordinates the domain is infinite with respect to coordinate 5 only and it fully suffices to
select sufficiently large number 7, and to consider the rectangle: [0<0<m;1<7<7]. In
the case of parabolic coordinates an actual infinity is to be specified also for the 7-coordinate,
namely 7o, and to consider the rectangle: [0 <7 <7y; 0 <7 <Nwo)-

In both directions we employ non-uniform mesh. The first and the last #-lines are
displaced (staggered) from the respective domain boundaries on a half of the adjacent value
of the spacing. Thus on two-point stencils second-order approximation for the boundary
conditions is achieved. The non-uniformity of the mesh enables us to improve the accuracy
near the body and to reduce the number of points at infinity.

In 6-direction the mesh is not staggered but it is once again non-uniform being very
dense in the vicinity of the rear stagnation point, i.e. in the vicinity of § = 0 which is of
crucial importance when acknowledging the infinity in cylindrical coordinates. It is desirable
to have the “actual infinity” in cylindrical coordinates as larger as possible in order to prepare
the ground for switching to the parabolic coordinates.
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The formulas for the staggered non-uniform 5-mesh and for the non-uniform -meshe
can be found in our previous contributions [3, 4]. Note that M is the number of points in
0- ot T-direction in the upper half plane of the flow. Respectively M is the total number of
grid lines in 7-direction.

The connection between the 7-mesh and §-mesh is derived on the basis of the connec-
tions between the two coordinate systems, namely

—\/R Sj:\/2Rj—7-j2,

and these relations can be transformed when necessary to calculate S;, 7; from R;, §; or vice

Jcosd; + R(0;), if 0<6;<m,; (4.1)

versa.

Let us now denote the spacings of the mesh by h;1; = 7,14
g1 =& —&,3=1,---,
importance for the successful solution of the problem. Then the coefficients and operators

-, t=1,---, M and
N —1. The choices for the mesh points and for 7., are of crucial

in (2.7) are approximated as follows:

AsRiN2 A2 R; Ass R AsR:N\2
2 24y 2 o A2l 2115
aij—ni[1+(Rj)]7 bi; anR ) du_m[l R; ‘|'2( Rj)]:
aij = 1+ (A255)", by =A2S;,  dij = —AnS;,
h:giv1; + (A — hi)bij — hi 1 ¢ia 0¢
h A P 1 L ,.7 141 1/ 7] i+1¥1-1,5 b hz
where Ay hahip(hi 1 hirs) = Gyl T Olhikia),
2 2 2 2
9ibijr1 + (951 — 93)bi5 — 93110651
Asdpy; = . s s = —-|.. + 0(9i95+1) ,
e 9i9+1(9; + giy1) 5 l:s T Ol9igis)
hidivi; — (hi + hiz1)dij + hividpir; 0%
ANidy;, = 2 : ; = = hih;
1193 hithise(hi + hirt) 677 i + O( +1),
_ 9% — (95 T 9i11)0i g 0%
22¢J gigit1 (g‘7 n g'i—l—l) 852 ‘” (ng.H—l)
Ai2gi; = AMAsdijia = 3 85‘ + O(hshiz1 + 9;9541) ,
for =2 ,M—1, = N

For second order of approximation the pointwise variation of the nonuniform mesh
must be smooth enough, in the sense that h; ~ O(hi11), g; = O(gjt1)-

The symmetry conditions ;o = ;2 and ¥; y+1 = 9; y_1 couple the above system. The
implementation of the conditions at infinity and for non-flux through T' is straightforward.
The dynamic condition is treated in the next subsection.

We solve the boundary value problem iteratively by means of splitting method. Upon
introducing fictitious time we render the equation to parabolic type and then employ the
so-called scheme of stabilising correction [16]. It is at no deviation from our above cited
previous works and we shall not dwell on it here.

To calculate afterwards the forces acting upon the body we use the simple formulas for
numerical integration based on the trapezoidal rule, which are consistent with the overall
second-order approximation of the scheme.
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4.2. Difference Approzimation for the Free Boundary

The equations (2.10) can be resolved for the derivatives R'(6) or S'(7) when the fol-
lowing conditions are satisfied:

o« R*(6 0
Q8 & ) 1, T= ik + R(6)sin 6
T2 on|,_,
or 2(r) , B (4.2)
e S(T)+ T oY
Q(T) d:f 1 ) T = +7
T2 On|,_,
The above inequalities are trivially satisfied in the vicinity of the leading-end stagnation
point inasmuch as that for § — = (or 7 — 0) one has T — 0 and hence 1;—2 — 00 or
521‘,';"2 — 00. In the present work we use the dynamic condition (2.5) in polar coordinates

only, so that we present here just the relevant scheme in polar coordinates without going
into the details for parabolic coordinates.

Suppose that the set functions %
1

%, RS, 55, TF are known from the previous global

We check the satisfaction of (4.2) beginning from the point
6 = 0 (or T = 7o) and continue with increasing 0 (decreasing 7). Let j© + 1 be the last

iteration, say of number a.

point where (4.2) is satisfied and, respectively j: — the first one where it is not (polar
coordinates). In the same manner are conducted the calculations in the “lower” half of the
plane when necessary. The position 8 of the detachment point is captured by means of a
linear interpolation

g — YiinQiy =05 Qizrn g =07 — i

For the shape function ]:Ej of free line is solved the following difference scheme

—'; + ‘Zx —1 for J:J::7717 (43)
(Tj T3

whose approximation is O(gjz-). Only in the in the detachment point the difference scheme
is different, specifying in fact the initial (“inlet”) condition, namely

. . Ri+R;y |1
Rj 11— R;= gjjfj1 2

* » a 12

Ju

where R without a superscript or “hat” stands for the known boundary of rigid body.
In the end a relaxation is used for the shape-function of the free boundary at each
global iteration according to the formula:

R = wR; + (1 — w)R?

where w is called relaxation parameter.

!We distinguish here between global and local iteration, the latter referring to the time-stepping of the
coordinate splitting method.
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4.8. The general Consequence of the Algorithm

Each global iteration contains two stages. On the first stage, the difference problem for
Laplace equation is solved iteratively either in polar or in parabolic coordinates (depending
on the development of the stagnation zone). The internal iterations (time steps with respect
to the fictitious time in the splitting procedure) are conducted until convergence is achieved
in the sense that the uniform norm is lesser than ~ €5 = 107¢. Thus the new iteration for
stream function 1/}%"'1

The polar coordinates appear to be instrumental only on the first several (7-10) global
iterations. When the rearmost cusp point of the stagnation zone reaches 10 diameters of

cylinder (calibres), the current-iteration values of the sought functions are transformed to

is obtained.

parabolic coordinates and thence the calculations for the stream function continue solely in
terms of parabolic coordinates.

The second stage of a global iteration consists in solving the difference problem for
the free surface in polar coordinates. The transition to and from parabolic coordinates is
done according to (4.1). Note that there is one-to-one correspondence between the points
in polar and parabolic coordinates and hence between the respective values of the scalar set
functions ¥ and R.

The criterion for convergence of the global iterations is defined by the convergence of the
shape function as being the most sensitive part of the algorithm, namely the global iterations
are terminated when max; ‘(R';""l — R';‘)/R';‘"l‘ < 107*. Then the velocity, pressure, and the
forces exerted from the flow upon the body are calculated.

5. Results and Discussion

The scheme and algorithm were tested for practical consistency of the approximation
by means of exhaustive numerical experiments involving different mesh resolutions. The
solution depends on the adequate choice for the “actual infinities” 74,7+ and the spacings
hi,g;. The “optimal” parameters have been selected after extensive numerical experiments.
For instance, the practical value for the relaxation parameter turned out to be w = 0.01.
Smaller values increased intolerable the computational time while w > 0.1 could not ensure
the convergence of the global iterations. Respectively 7o = 10 is the optimal value for the
latteral “actual infinity”

In Figs. 1-a,b is presented the obtained shape of the stagnation zone near the body
and in the far wake, respectively. The symbols stand for the results taken from the charts
of the paper [13]. It is seen that up to 100 calibres our calculations with different mesh
parameters compare among themselves quantitatively very well. The logarithmic scale is
used in Fig. 1-b in order to expand the difference between to solutions making it visible in
the graph. This supports the claim that indeed a solution to the Helmholtz problem has
been found numerically by means of the developed in the present work difference scheme.

The calculated here dimensionless pressure g is shown in Fig. 2. In the stagnation
zone it is of order of 10™*, which is in very good agreement with the assumption that the
unknown boundary is defined by the condition ¢ = 0. The amplitude of the minimum of ¢
1s smaller than 3 the latter being the value for ideal flow without separation. This means
that the stagnation zone influences the flow upstream.

95



08 |- .
<
06 | o i
\\
0.4 [ \ S -
0.2 |- -
0
0 1 2 3 4 5

(a) the near wake,

0.1

0.01

10 30 50 70 90 110 130 150

(b) the far wake,

Figure 1: The separation lines for relaxation parameter 0.01 and different resolutions: - - -

- 81x136; — — — 101x136; —— 101x201; Sowthwell and Vaisy.
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Figure 2: The pressure distribution for relaxation w = 0.01 and different resolutions: - - - -

81x136; — — — 101x136; —— 101x201.

6. Concluding Remarks

The separated inviscid flow behind a circular cylinder is treated as a flow with free
surface — the boundary of the stagnation zone (Helmholtz problem). Scaled coordinates
are employed rendering the computational domain into a region with fixed boundaries and
transforming the Bernoulli integral into an explicit equation for the shape function. Differ-
ence scheme using oordinate splitting is devised. Exhaustive set of numerical experiments is
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run and the optimal values of scheme parameters are defined. Results are verified on grids
with different resolutions. The obtained here shape of the stagnation zone is of infinitely
long cusp which confirms a long forgotten numerical result of [13].
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