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NUMERICAL APPROACH TO INVISCID SEPARATED FLOWSWITH INFINITELY-LONG CUSP-ENDED STAGNATION ZONEC. I. Christov and M. D. Todorov1. IntroductionThe separated 
ows attracted the attention as early as in the Seventies of the previouscentury. Helmholtz [9] posed the problem as matching between a potential 
ow and astagnant zone at priory unknown free boundaries which are tangential discontinuities andwhere the balance of normal stresses (the pressure) holds. Krichho� [12] came up with the�rst solution for the ideal jet 
owing out from a hole when the detachment points wereknown in advance. For blunt bodies an additional condition for smooth separation (callednow Brillouin-Villat condition [1, 15]) is to be satis�ed. The �rst approximate solution fora blunt body (the circular cylinder) was provided by Brodetsky [2] who came up with aparabolic expanding at in�nity shape of the stagnation zone. To a reasonable degree thissolution was qualitatively con�rmed by the Navier-Stokes calculations [11, 7, 8].Another Helmholtz 
ow radically di�erent from the Brodetsky 
ow takes place whenthe breadth of the stagnation zone decreases at in�nity forming an in�nite cusp. Glimpsesof this kind of 
ow were �rst encountered in the direct di�erence solutions [10, 13] but dueto the limitation of computers the shape of the zone was not conclusive and later on themodel was virtually abandoned in the literature. We also found this cusp-ended stagnationzones [3, 4, 5] by means of di�erence scheme and con�rmed by integral-method calculations[14]. The gist of our approach is to make use of two di�erent coordinate systems: the ubiqui-tous polar coordinate system (turning out to be ine�ective for the case of in�nite stagnationzones extending far away from the rear end of body) and the parabolic coordinate systemthe latter being topologically more suited for solving Laplace equation outside in�nitely longstagnation zones. We initiate the calculations in polar coordinates switching to paraboliccoordinates after the stagnation zone has fairly well developed and has become long enough.In our previous works we solved the equation for shape function in parabolic coordi-nates. Although this algorithm turned out to work well for Brodetsky 
ow, it was not veryconvenient for cusp-ended stagnation zones leading to hard to tackle numerical instabilities.88



Here we use the parabolic coordinates for Laplace equation only and treat the shapefunction exclusively in terms of the polar coordinates where the governing equation is sta-ble. At each global iteration the solution for stream function is returned from parabolic tocylindrical coordinates and then used in the equation for the shape function.2. Posing the problemConsider the steady inviscid 
ow past a circle { the cross section of an in�nitely longcircular cylinder. The direction of the 
ow coincides with the line � = 0; � of the polarcoordinates and the leading stagnation point of the 
ow is situated in the point � = �.For the sake of convenience we recall here the connection between parabolic and Cartesiancoordinates x = 12(� 2 � �2) ; � � 0 ; y = �� ; �1 > � >1 :Dimensionless variables are introduced as follows 0 =  LU1 ; r0 = rL; q = p � pc12�U21 ; � = pL�0; � = pL� 0; � = p1 � pc12�U21 ; (2.1)where L is the characteristic length of the body (2a for a cylinder of radius a), U1 { velocityof the undisturbed 
ow; pc { the pressure inside the stagnation zone; p1 { the pressure atin�nity. Without fear of confusion the primes will be omitted henceforth.The parameter � is called cavitation number. For 
ows with stagnation zones it istrivially equal to zero since the pressure must be continuous at in�nity and hence pc = p1.For cavitation problems � can assume nontrivial values since pc is not forced to be equalto p1. Let us mention in passing that in general the pressure in the stagnation zone canalso be a function of the longitudinal variable accounting thus for the interaction with theboundary layer.2.1. Coordinate systemsIn terms of the two coordinate systems (cylindrical and parabolic) Laplace equationfor the stream function function  reads: rr + 1r r + 1r2 �� = 0 ; or 1�2 + � 2 ( �� +  ��) = 0 : (2.2)The undisturbed uniform 
ow at in�nity is given by jr!1 � rU1 sin � ; or  j�!1; �!�1 � ��U1 : (2.3)On the combined surface \body+stagnation zone" hold two conditions. The �rst con-dition secures that the said boundary is a stream line (say of number \zero") (R(�); �) = 0; � 2 [0; 2�] or  (S(� ); � ) = 0; � 2 [�1;1] ; (2.4)where R(�), S(� ) are the shape functions of the total boundary in polar or parabolic coordi-nates, respectively. Here and henceforth we use the notation �1 for the portion of boundaryrepresenting the rigid body (the cylinder) and �2 { for the free streamline.89



Let �� and � � be the magnitudes of the independent coordinates for which the detach-ment of 
ow occurs. As far as we consider only the case when the stagnation zone is situatedbehind the body then the portion of �2 which describes the free line for the \upper part" ofthe 
ow is de�ned as 0 � � � ��u or � � � �u ; respectively. The \lower part" is described bythe inequalities ��l � � � 2� and � � �� �l : On �2 the shape function R(�) is unknown andit is to be implicitly identi�ed from Bernoulli integral with the pressure equal to a constant(say, pc) which is the second condition holding on the free boundary. For the two coordinatesystems one gets the following equations for shape functions R(�) or S(� ):"q +  2�r2 +  2r#r=R(�) = 1 ; or "q + ( 2� +  2� )�2 + � 2 #�=S(�) = 1 ; (2.5)0 � � � ��u ; � �u < � <1 :For symmetric bodies it is su�cient to solve the boundary value problem (2.2), (2.3),(2.4), (2.5) in one of the halfs of the 
ow (say, the upper half) and additional conditions areadded @ @� = 0 ; � = 0; � or @ @� = 0 ; � = 0 : (2.6)In the general case of non-symmetric bodies the problem must be solved in the entireplane which implies that (2.5) must be imposed also on the other free line (the line whichlies in the lower semi-plane), if it exists.2.2. Scaled VariablesThe outlined boundary value problem is very inconvenient for numerical treatmentmainly because of two reasons. The �rst is that the boundary lines are not coordinate lines.The second is that the shape function of the stagnation zone must be implicitly identi�edfrom the additional boundary condition (2.5). A way to overcome these di�culties is to scalethe independent variable (� or � ) by the shape function R(�) or S(� ); respectively. Such amanipulation renders the original physical domain under consideration into a region with�xed boundaries, the latter being coordinate lines. In addition the Bernoulli integral becomesan explicit equation for the shape function of the free boundary. Scaling the independentvariable proved very e�cient in numerical treatment of inviscid or viscous 
ows with freeboundaries (see, e.g., [6]).We de�ne after [3, 4, 5] new independent coordinates:� = rR�1(�) ; � = � � S(� )in place of the polar radius r or the parabolic coordinate �, respectively.In the virtue of these transformations of boundary � = �1 + �2 the region becomes asemi-in�nite strip in bothe coordinate systems[1 � � <1 ; 0 � � � �] or [0 � � <1 ; 0 < � <1] :We treat the two coordinate systems in a uniform way denoting � � � or � � �depending on the particular case under consideration. In terms of the new coordinates (�; �),90



the stream function is a compound function ~ (�; �) �  (r(�; �); �) or ~ (�; � ) �  (�(�; �); �)but in what follows we drop the \tilde" without fear of confusion. The Laplace equationtakes then the form a �� � 2b �� +  �� + d � = 0 (2.7)where a � �2h1 + �R0R �2i ; b � �R0R ; d = �h1� R00R + 2�R0R �2i ;ora � 1 + S 02; b � S 0; d = �S 00 :In fact the \relative" function � is used� (�; �) =  (�; �)� �R(�) sin � ; � (�; � ) =  (�; � )� [� + S(� )]� ;which is obviously a solution to eq.(2.7) and which we loosely call stream function. Theasymptotic boundary condition then becomes� ����=�1 = 0 or � ����=�1; �=��1 = 0 ; (2.8)while the non-
ux condition on � transforms as follows� ����=1 = ��R(�) sin � or � ����=0 = �S(� )� : (2.9)Thus eqs.(2.7), (2.8), (2.9) de�ne a well posed boundary value problem provided thatfunctions R(�) and S(� ) are known. On the other hand in the portion �2 of the boundary(where these functions are unknown) they can be evaluated from the Bernoulli integral (2.5)which now becomes an equation for the shape functionR2 +R02R4 24 @ � @� ������=1+R(�) sin �352 = 1 ; or 1 + S 02S2 + � 2 24 @ � @� ������=0+ �352 = 1 ; (2.10)0 � � � ��u ; � �u � � <1 :3. Forces Exerted on the bodyThe presence of a stagnation zone breaks the symmetry of the integral for the normalstresses and hence D'Alembert paradox ceases to exist, i.e. the force exerted from the 
owupon the body is no more equal to zero. Denote by the outward normal vector to thecontour �. Then the force acting upon the contour is given by= � I� pds = � I�(q + pc)ds def= �aU21 [Cx + Cy] ; (3.1)where Cx and Cy are the dimensionless drag coe�cient and the lifting force. Note that theboundary � (rigid or free) is de�ned by the equation ��F (�) = 0, where � � r; F (�) � R(�)or � � � ; F (�) � S(� ). The unit vector normal to the line � and the elementary lengthalong � are expressed as=  �pg11 � F 0(�)�pg22 !" 1g11 + F 02(�)g22 #� 12; ds = d�qg11F 02(�) + g22 ; (3.2)where g11 = 1 ; g22 = R(�) ; or g11 = pS2 + � 2 ; g22 = pS2 + � 2 : (3.3)91



are the components of the metric tensor in the two coordinate systems. Respectively � =r ; � = � or � = � ; � = � are the unit vectors tangential to the coordinate lines. These areconnected to the Cartesian basis vectors and as follows� = 1pg22  @x@� + @y@�! and � = 1pg11  @x@� + @y@�! ;where x and y are the Cartesian coordinates. Upon substituting the above relations into(3.1) and after obvious manipulations we obtain for the drag and lifting-force coe�cients thefollowing expressionCx = 2 Z ���uq [R(�) cos � +R0(�) sin �] d� Cx = 2 Z ��u0 q [S(� ) + S 0(� )� ]d�or (3.4)Cy = 2 Z ���uq [R(�) sin � �R0(�) cos �] d� Cy = 2 Z ��u0 q [� � S 0(� )S]d� :where the dimensionless pressure is given byq = 1 � R2 +R02R4 24 @ � @� ������=1+R(�) sin �352 or q = 1� 1 + S 02S2 + � 2 24 @ � @� ������=0+ �352: (3.5)4. Di�erence Scheme and Algorithm4.1. A Splitting scheme for Laplace equationBy means of the scaled coordinates the physical rigion under consideration has been trans-formed into a computational domain with �xed boundaries. This radically simpli�es theimplementation of the di�erence scheme enabling one to use the economic schemes of co-ordinate splitting. The only numerical di�culty that remains is connected with the factthat the domain is in�nite. For the purposes of the numerical solution, the domain must bereduced to �nite one after appropriately choosing the \actual in�nities". In the case of polarcoordinates the domain is in�nite with respect to coordinate � only and it fully su�ces toselect su�ciently large number �1 and to consider the rectangle: [0� ���; 1����1]. Inthe case of parabolic coordinates an actual in�nity is to be speci�ed also for the � -coordinate,namely �1 and to consider the rectangle: [0����1; 0����1].In both directions we employ non-uniform mesh. The �rst and the last �-lines aredisplaced (staggered) from the respective domain boundaries on a half of the adjacent valueof the spacing. Thus on two-point stencils second-order approximation for the boundaryconditions is achieved. The non-uniformity of the mesh enables us to improve the accuracynear the body and to reduce the number of points at in�nity.In �-direction the mesh is not staggered but it is once again non-uniform being verydense in the vicinity of the rear stagnation point, i.e. in the vicinity of � = 0 which is ofcrucial importance when acknowledging the in�nity in cylindrical coordinates. It is desirableto have the \actual in�nity" in cylindrical coordinates as larger as possible in order to preparethe ground for switching to the parabolic coordinates.92



The formulas for the staggered non-uniform �-mesh and for the non-uniform �-meshecan be found in our previous contributions [3, 4]. Note that M is the number of points in�- ot � -direction in the upper half plane of the 
ow. Respectively M is the total number ofgrid lines in �-direction.The connection between the � -mesh and �-mesh is derived on the basis of the connec-tions between the two coordinate systems, namely�j = qR(�j) cos �j +R(�j) ; if 0 � �j � � ; Sj = q2Rj � � 2j ; (4.1)and these relations can be transformed when necessary to calculate Sj; �j from Rj ; �j or viceversa.Let us now denote the spacings of the mesh by hi+1 � �i+1 � �i ; i = 1; � � � ;M andgj+1 � �j+1��j ; j = 1; � � � ; N�1. The choices for the mesh points and for �1 are of crucialimportance for the successful solution of the problem. Then the coe�cients and operatorsin (2.7) are approximated as follows:aij = �2i h1 + ��2RjRj �2i ; bij = �ij�2RjRj ; dij = �ih1� �22RjRj + 2��2RjRj �2i ;aij = 1 + (�2Sj)2 ; bij = �2Sj ; dij = ��22Sj ;where �1�ij � h2i�i+1;j + (h2i+1 � h2i )�ij � h2i+1�i�1;jhihi+1(hi + hi+1) = @�@� ���ij +O(hihi+1) ;�2�ij � g2i �i;j+1 + (g2j+1 � g2j )�ij � g2j+1�i;j�1gjgj+1(gj + gi+1) = @�@� ���ij +O(gjgj+1) ;�11�ij � 2hi�i+1;j � (hi + hi+1)�ij + hi+1�i�1;jhiihi+1(hi + hi+1) = @2�@�2 ���ij +O(hihi+1) ;�22�ij � 2gi�i;j+1 � (gj + gj+1)�ij + gj+1�i;j�1gigj+1(gj + gi+1) = @2�@�2 ���ij +O(gjgj+1) ;�12�ij � �1�2�i;j+1 = @2�@�@� ���ij +O(hihi+1 + gjgj+1) ;for i = 2; � � � ;M � 1 ; j =; � � � ; NFor second order of approximation the pointwise variation of the nonuniform meshmust be smooth enough, in the sense that hi � O(hi+1), gj � O(gj+1).The symmetry conditions  i;0 =  i;2 and  i;N+1 =  i;N�1 couple the above system. Theimplementation of the conditions at in�nity and for non-
ux through � is straightforward.The dynamic condition is treated in the next subsection.We solve the boundary value problem iteratively by means of splitting method. Uponintroducing �ctitious time we render the equation to parabolic type and then employ theso-called scheme of stabilising correction [16]. It is at no deviation from our above citedprevious works and we shall not dwell on it here.To calculate afterwards the forces acting upon the body we use the simple formulas fornumerical integration based on the trapezoidal rule, which are consistent with the overallsecond-order approximation of the scheme. 93



4.2. Di�erence Approximation for the Free BoundaryThe equations (2.10) can be resolved for the derivatives R0(�) or S 0(� ) when the fol-lowing conditions are satis�ed:Q(�) def= R2(�)T 2 > 1 ; T = @ � @� ������=1+R(�) sin �or (4.2)Q(� ) def= S2(� ) + � 2T 2 > 1 ; T = @ � @� ������=0+ �The above inequalities are trivially satis�ed in the vicinity of the leading-end stagnationpoint inasmuch as that for � ! � (or � ! 0) one has T ! 0 and hence R2T 2 ! 1 orS2+�2T 2 ! 1. In the present work we use the dynamic condition (2.5) in polar coordinatesonly, so that we present here just the relevant scheme in polar coordinates without goinginto the details for parabolic coordinates.Suppose that the set functions  �ij; R�j ; S�j ; T �j are known from the previous globaliteration, say of number �.1 We check the satisfaction of (4.2) beginning from the point� = 0 (or � = �1) and continue with increasing � (decreasing � ). Let j�u + 1 be the lastpoint where (4.2) is satis�ed and, respectively j�u { the �rst one where it is not (polarcoordinates). In the same manner are conducted the calculations in the \lower" half of theplane when necessary. The position ��u of the detachment point is captured by means of alinear interpolation ��u = �j�u+1Qj�u � �j�uQj�u+1Qj�u �Qj�u+1 ! g�u = ��u � �j�u+1 :For the shape function R̂j of free line is solved the following di�erence schemeR̂j�1 � R̂j = gj R̂j + R̂j�12 vuuut12 24 R�jT �j !2 +  R�j�1T �j�1 !235� 1 for j = j�u; � � � ; 1 ; (4.3)whose approximation is O(g2j ). Only in the in the detachment point the di�erence schemeis di�erent, specifying in fact the initial (\inlet") condition, namelyR̂j�u �R(��u) = g�uR(��u) + R̂j�u2 vuut12"R�j�uT �j�u #2 � 1 (4.4)where R without a superscript or \hat" stands for the known boundary of rigid body.In the end a relaxation is used for the shape-function of the free boundary at eachglobal iteration according to the formula:R�+1 = !R̂j + (1� !)R�jwhere ! is called relaxation parameter.1We distinguish here between global and local iteration, the latter referring to the time-stepping of thecoordinate splitting method. 94



4.3. The general Consequence of the AlgorithmEach global iteration contains two stages. On the �rst stage, the di�erence problem forLaplace equation is solved iteratively either in polar or in parabolic coordinates (dependingon the development of the stagnation zone). The internal iterations (time steps with respectto the �ctitious time in the splitting procedure) are conducted until convergence is achievedin the sense that the uniform norm is lesser than � "2 = 10�6. Thus the new iteration forstream function  �+1ij is obtained.The polar coordinates appear to be instrumental only on the �rst several (7-10) globaliterations. When the rearmost cusp point of the stagnation zone reaches 10 diameters ofcylinder (calibres), the current-iteration values of the sought functions are transformed toparabolic coordinates and thence the calculations for the stream function continue solely interms of parabolic coordinates.The second stage of a global iteration consists in solving the di�erence problem forthe free surface in polar coordinates. The transition to and from parabolic coordinates isdone according to (4.1). Note that there is one-to-one correspondence between the pointsin polar and parabolic coordinates and hence between the respective values of the scalar setfunctions  and R.The criterion for convergence of the global iterations is de�ned by the convergence of theshape function as being the most sensitive part of the algorithm, namely the global iterationsare terminated when maxj ���(R�+1j �R�j )=R�+1j ��� < 10�4. Then the velocity, pressure, and theforces exerted from the 
ow upon the body are calculated.5. Results and DiscussionThe scheme and algorithm were tested for practical consistency of the approximationby means of exhaustive numerical experiments involving di�erent mesh resolutions. Thesolution depends on the adequate choice for the \actual in�nities" �1; �1 and the spacingshi; gj . The \optimal" parameters have been selected after extensive numerical experiments.For instance, the practical value for the relaxation parameter turned out to be ! = 0:01.Smaller values increased intolerable the computational time while ! > 0:1 could not ensurethe convergence of the global iterations. Respectively �1 = 10 is the optimal value for thelatteral \actual in�nity"In Figs. 1-a,b is presented the obtained shape of the stagnation zone near the bodyand in the far wake, respectively. The symbols stand for the results taken from the chartsof the paper [13]. It is seen that up to 100 calibres our calculations with di�erent meshparameters compare among themselves quantitatively very well. The logarithmic scale isused in Fig. 1-b in order to expand the di�erence between to solutions making it visible inthe graph. This supports the claim that indeed a solution to the Helmholtz problem hasbeen found numerically by means of the developed in the present work di�erence scheme.The calculated here dimensionless pressure q is shown in Fig. 2. In the stagnationzone it is of order of 10�4, which is in very good agreement with the assumption that theunknown boundary is de�ned by the condition q = 0. The amplitude of the minimum of qis smaller than 3 the latter being the value for ideal 
ow without separation. This meansthat the stagnation zone in
uences the 
ow upstream.95
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ow behind a circular cylinder is treated as a 
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