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Abstract. A new paradigm is discussed in which the discrete facet of physical
phenomenology is related to the existence of localized wave solutions (solitons)
of a underlying metacontinuum (unified field, physical vacuum, etc.) while the
action at a distance is a manifestation of the internal stresses in metacontinuum.
The latter is considered as thin elastic 3D layer (a shell) in the 4D geometrical
space. Maxwell’s equations are recovered as corollaries from the equations of the
motion in the middle surface. The equation for the amplitude of transverse flexural
deformation appears to be a fourth order dispersive equation similar to the one
derived by Schrödinger. The localized flexural (curvature) waves propagating over

the surface of metacontinuum are interpreted as particles. A possible unification of
the gravitation, electromagnetic phenomena and wave mechanics is demonstrated.

Introduction

The apparent duality between the point particles and field(s) underlies the
foundation of modern physics. The Aristotelian tradition was connected with the
notion of continuum but with the advance of the experimental physics the attention
gradually shifted to the concept of point particles (corpuscles) moving freely in a void
geometrical space. This new concept was heralded by Newton in his first two laws
and it gave rise of a fruitful quantitative description of the motion of bodies known
nowadays as Newtonian Mechanics . Yet it was Newton himself who admitted also
an action at a distance when formulating the law of gravitation. Thus from the very
beginning was planted the seed of dualism.

It is hard to imagine an action at a distance without some kind of a car-
rier. The nineteen-century tradition was always connected with some mechanical
construct. In Cauchy’s and Hamilton’s vision it was a lattice whose continuum ap-

1On leave from National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences,
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proximation yielded the elastic-body model.2 Paying tribute to the metaphysical
tradition, all of the models for the presumably absolute continuous media underlying
the physical world were called “aether, ” although some of them (the different elastic
models, for instance) were quite different from an “aetherial fluid” (where the coinage
comes from). In Maxwell’s imagination it was a medium with internal degrees of free-
dom. McCullagh and Sommerfeld quantified this idea as an elastic body with special
rotational elasticity (see [1] for exhaustive review of these theories).

The downfall of the concept of aether began with the unsatisfactory results
of Cauchy’s “volatile aether” (elastic body with vanishing dilational modulus). After
Lord Kelvin came up with the model of fluid aether and its vortex theory of matter,
the coinage “aether” assumed almost exclusively fluid meaning. Then the question
of entrainment of aether (aether-drift) was posed and the nil result of Michelson
and Morley experiment blew down the whole edifice of aether theories. However, the
notion of a material carrier of the long-distance interactions could not be dismissed so
easily and the conceptual vacuum was filled by the concept of what is called nowadays
“physical vacuum” which possessed all the properties of the disgraced aether (e.g.,
action at a distance and giving birth to particles), but was deliberately exempted
from the obligation to be checked for aether-drift effect. It was then advertised as a
thing in itself not connected to any “primitive mechanistism.” The same conceptual
load carries the coinage “field.”

On a new level, the yearning for continuum description resurrected in the
Hamiltonian-Schrödinger wave mechanics. From the far side de Broglie quantified
the wave properties of the particles. At that moment it was not clear how the two
facets of the same object—the material particle—can peacefully coexist and it led to
the concept that some kind of “pilot” wave was associated with a “point particle”
representing the probability to find the latter at certain spatial position. Thus the
dichotomy was deeply implanted in the physical thought and is still the dominant
general attitude in the modern physics. As a result there has appeared a rather
intricate web of coinages (pseudo, quasi , etc.) when certain phenomenological fact
pertaining to the one facet was being explained in the terminology of the dual facet.

In our point of view, the field (physical vacuum, aether) can only be under-
stood from the point of view of a material continuum where the internal stresses are
the transmitter of the long-range interactions . In order to distinguish it from the
mechanical continuous media (bodies, liquids, gases, etc.), we call the continuum-
mechanics model of the unified field metacontinuum in the sense that it is beyond
(meta) the observable phenomena and is their progenitor. Returning to the con-
cept of absolute continuum will be senseless without some new paradigm concerning
the “point matter.” It is not possible to imagine point particles pushing their way
through infinitely stiff, virtually incompressible elastic body. Even if they could, the
disturbances would be the predominant effect which has not been observed in any
experiment. So the new paradigm has to deal with inventing the concept of a particle

2It is curious to mention here that Cauchy came up with the elasticity theory because of his
attempts to constitute the aether.
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which does not disturb the underlying continuum during its motion. The new concept
we implant on the old tree of the absolute medium is that a particle is not something
foreign to the field and immersed in the latter. Rather it is a localized wave of the
field which propagates over the field (as a phase pattern) and is not moving through
the field. Then we have to find phase patterns that are permanent enough in order
to qualify for particles. Such individualized waves are well known from the soliton
theory.

J. Scott Russell who was a contemporary of the golden age of the aether
theories provided [2,3] the experimental evidence that a nonlinear field (2D surface
of ideal fluid) can exhibit patterns of type of permanent waves with individualized
comportment. The theoretical explanation was found by Boussinesq [4] and Lord
Rayleigh [5] and it appeared that the balance between nonlinearity and dispersion
is which sustains the long-living phase pattern. Zabusky and Kruskal [6] showed
numerically that the solitary waves of KdV equation (close relative to Boussinesq
equation) preserve their shapes and energies upon collisions and called them solitons
to stress the particle-like behaviour (“quasi-particles”).

Thus the stage for the unification was set up long time ago though it was not
recognized as such. The only remaining question is which is the field (metacontin-
uum) whose solitary-wave phase patterns are the particles. A valid candidate for the
luminiferous field is the elastic medium because it gives a good quantitative prediction
for the shear-wave phenomena (light). As it is shown in [7] and briefly outlined here,
the Maxwell equations are corollary from the linearized governing equations of the
metacontinuum provided that the electric and magnetic filed are properly understood
as manifestation of the “meta” internal stresses. The main difference from Cauchy’s
elastic aether is that we consider the opposite limiting case: an elastic continuum
with infinitely large dilational modulus (virtually incompressible elastic medium).

There are other candidates for the field, e.g., the sine-Gordon equation con-
sidered in [8,9]. It is believed to be the meson field possessing solutions of type of
“quasi-particles.” Oddly enough, those localized waves are of type of fronts (kinks)
which though mathematically well localized hardly fit into the common-sense picture
of a particle. Yet the spatial derivatives of the solution did have the expected shape
and the kinks qualify for solitons because the energy is conserved during the colli-
sions. Nowadays there are many other “fields” and new are being introduced ad hoc
for explaining one or another of the hundreds of elementary particles already known.

Here we stay firmly on the position that there is only one metacontinuum and
the different fields are different manifestation of its internal stresses and strains. The
“organization” of the matter around some terminology like “particles,” “charges,”
“spins” is simply our way to simplify and thus to comprehend the complexity and
richness of the interactions of localized phase patterns (solitons). For this reason we
prefer to call the present attempt for an unified field theory “Soliton Paradigm.” And
the most ambitious goal is to derive the electromagnetic phenomena, the gravitation
and wave mechanics from a single mechanical model of a metacontinuum.

Clearly, if one is to unify the wave function with the electromagnetic phenom-
ena one has to consider more than three spatial dimensions. In addition, the thickness
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in the fourth dimension of the “material world” must be so small that it cannot be
perceived by our senses. This idea was put forward by Hinton [10] but on qualitative
basis only. Kalutza [11] and Klein [12] also considered additional “underdeveloped”
dimensions, but they added a vector field to the Einstein equation while we add a
scalar field to the Maxwell equations, the latter appearing here in the guise of a vector
equation for shear waves in elastic continuum.

Carrying on with this idea we ask the question: “What kind of manifestation
is to be expected from the fact that the material world is a thin 3D layer in the 4D ge-
ometrical space?” Naturally, the presence of “underdeveloped” dimension(s) should
result into some new observables in addition to those that were sufficient to make
a self-consistent picture in the Maxwellian framework. Depending on the topology
of the metacontinuum there may be (or may not be) a number of these manifesta-
tions, connected with different spins in multi-dimensional space. The existence of at
least one additional variable is inevitable, namely the amplitude of deflection of the
3D layer in direction of the fourth dimension. In Section 2 we derive an equation
(“master equation of wave mechanics”) governing the said amplitude for geometri-
cally nonlinear very thin (virtually ND) elastic layers in N + 1 dimensions. We call
this kind of mechanical construct gossamer . Naturally, this equation is not a follow-
up from the governing equations in N dimensions, just like in the real world the
Schrödinger equation is not a corollary form the Maxwell equations.

The rest of the paper is devoted to arranging a cosmological picture of the
solitary waves—phase patterns. In many instances they appear to be quite similar to
what the long-longed unified theory is expected to bring.

1. Constituting a Metacontinuum

For small velocities the Lagrangian and Eulerian descriptions of a continuum
coincide and for the displacements u of a Hookean elastic medium one has the linear
vector wave equation

µ0
∂A

∂t
≡ µ0

∂2u

∂t2
= η∆u+(λ+η)∇(∇·u) ≡ −η∇×∇×u+(λ+2η)∇(∇·u) , (1.1)

where u, A are the displacement and velocity vectors; η, λ are Lamé’s elasticity
coefficients and µ0 is the density in material (Lagrangian) coordinates. Note that we
concern ourselves for the time being only with a metacontinuum of constant elastic
coefficients η, λ and density µ0.

The full set of physical motions governed by (1.1) includes shear and compres-
sion/dilation as well. The former are controlled by the shear Lamé coefficient η, while
the latter—by the dilational (second) Lamé coefficient λ, and more specifically by the
sum (λ + 2η). The phase speeds of propagation of the respective small disturbances
are

c =

(

η

µ0

)
1

2

, cs =

(

2η + λ

µ0

)
1

2

, δ =
η

(2η + λ)
. (1.2)
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Here c and cs are the speeds of shear waves (light) and compression waves (sound),
respectively. In the case of very large dilational modulus, the speed of sound is much
greater than the speed of light and δ ≪ 1. This is the opposite limiting case than the
“volatile aether” of Cauchy with η ≫ λ. Then Eq. (1.1) is recast as follows

δ

(

c−2∂
2u

∂t2
+∇×∇× u

)

= ∇(∇·u) , (1.3)

and displacement u can be developed into power asymptotic series with respect to δ

u = u0 + δu1 + · · · . (1.4)

Introducing (1.4) into (1.3) and combining the terms with like powers we obtain for
the first two terms

∇(∇·u0) = 0 , (1.5)

c−2∂
2u0

∂t2
+∇×∇× u0 = ∇(∇ · u1) . (1.6)

From (1.5) one can deduce

∇ · u0 = const, or ∇ ·A0 = 0 , (1.7)

which is also a linear approximation to incompressibility condition for a continuum. In
the general model of nonlinear elasticity with finite deformations the incompressibility
condition is imposed on the Jacobian of transformation from material to geometrical
variables, but in the first-order approximation in δ the Eq. (1.7) holds true.

From here on we omit the index ‘0’ without fear of confusion. We denote
formally the term (λ + 2η)∇ · u1 by (−ϕ) and recast (1.6) as dimensional form of
linearized Cauchy balance, namely

µ0
∂A

∂t
= −∇ϕ +∇ · τ , (1.8)

where τ is the deviator stress tensor for which the following relation is obtained from
the constitutive relation (the Hooke law) for elastic body, namely

τ = η(∇u+∇uT )− 2η(∇ · u)I, (1.9)

where I stands for the unit tensor. For the divergence of τ one has

∇ · τ = −η∇× (∇× u) . (1.10)

What is essential for the unification is that the linearized equations of elastic
continuum admit what we call Maxwell form. The derivations here are not to be
confused with McCullagh’s model of pseudo–elastic continuum (see [1,13] for refer-
ences and further developments) with restoring couples by means of which he tried
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to explain the unusual shape of Maxwell’s equations apparently not fitting into the
picture of continuum mechanics. Let us introduce the vector field

E
def
= −∇ · τ ≡ η∇× (∇× u) . (1.11)

to which the action of the purely shear part of internal stresses is reduced. It has the
meaning of a point-wise distributed body force and we shall call it “electric force.”
In terms of E, the linearized system (1.8) yields

E = −
∂A

∂t
−∇ϕ , (1.12)

involving the well known vector and scalar potentials A and ϕ. In the framework
of the present approach, however, these potentials are not non-physical quantities
introduced merely for convenience, but rather they appear to be the most natural
variables: velocity and pressure of metacontinuum. Taking the curl of (1.12) one
obtains

∇×E = −
∂B

∂t
(1.13)

which is nothing else but the first of Maxwell’s equations (the Faraday law) provided
that a “magnetic induction” B is defined as

B = µ0∇×A = µ0H H
def
= ∇×A , (1.14)

where H is called “magnetic field.” From Eq. (1.11) one obtains

1

η

∂E

∂t
= ∇× (∇×

∂u

∂t
) ≡ ∇×H . (1.15)

The last equation is precisely the “second Maxwell equation” provided that
the shear elastic modulus of metacontinuum is interpreted as the inverse of electric
permittivity η = ε−1

0 . This equation was postulated by Maxwell [14] as an improve-
ment over Ampere’s law incorporating the so-called displacement current ∂E/∂t in
the Biot–Savart form. For the case of a void space, however, when no charges or
currents are present, the second Maxwell equation lives a life of its own and Am-
pere’s law plays merely heuristic role for its derivation. It is broadly accepted now
that the second Maxwell equation is verified by a number of experiments. Here we
have shown that it is also a corollary of the elastic rheology of the metacontinuum
and is responsible for the propagation of the shear stresses (action at a distance) in
metacontinuum.

The two main equations of evolution of Maxwell’s form have already been
derived. The condition divH = 0 (the third Maxwell equation) follows directly from
the very definition of magnetic field. Similarly, taking divergence of Eq. (1.11), one
immediately obtains the fourth Maxwell equation divE = 0. Thus we have shown
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that Maxwell’s equations follow from the linearized governing equations of a Hookean
elastic medium whose dilational modulus is much larger than the shear one.

2. A Curved Metacontinuum? The Gossamer

From the point of view of material continuum a curved medium can be consid-
ered only as being embedded into a geometrical space of at least one spatial dimension
larger, e.g., the Maxwell luminiferous field can be considered as 3D material hyper-
surface in 4D geometrical space. It is hard to imagine a material surface which has
no thickness. A 3D hypersurface is a mathematical abstraction for the material con-
struct known as thin shell (or a membrane) when the so-called middle surface of the
latter is considered. If the shell is flat then the electromagnetism will be the only phe-
nomena to be observed in three dimensions. Let us examine now the consequences of
the curvature and transverse (flexural) deflections of metacontinuum. The existence
of another spatial dimension cannot be detected in 3D shear-waves (electromagnetic)
experiments.

Following the previous sections we consider an elastic shell of a 4D material
whose shear Lamé coefficient is much smaller than the dilational one (their ratio
given by the small parameter δ). As usual in shell/plate/membrane theories the
small parameter ε = h/L is the most important one, where h is the thickness of
the shell and L is the length-scale of the deformations of the middle surface. The
thin-layer simplification apply when ε ≪ 1. The problem is to find a correct way
to reduce the 4D continuum mechanics to an effective 3D mechanics for the middle
surface of the shell.

In the technological applications an additional assumption is tacitly made,
namely that L is large (“shallow shells”) and shell is called a “reasonably” thin
elastic structure whose flexural deformation (deflections) are of unit order, the strains
(gradients) are O(L−1) small and the curvatures are of second-order in smallness.
Here we relieve the limitation of large L and treat the case 1 ≫ L ≫ h. Then the
deflections must be small, the strains (gradients)—of unit-order, and curvatures—
large. The standard shell theory is not sufficient for describing such an object which
is geometrically strongly nonlinear. As shown in [7], when deriving the shell equations
for this limiting case one has to acknowledge more terms responsible for the geometric
nonlinearity. At the same time the material nonlinearity is not so important because of
the vanishing thickness h. In order to distinguish them from the classical shallow shells
we call this kind of very thin elastic layers undergoing very high strains gossamers .

2.1. Manifestation of Underdeveloped Dimensions

We summarize here the relevant items of derivation of gossamer ’s theory.
Wherever possible we keep the derivation general enough speaking about ND layer
in (N+ 1)D space, but for the purposes of the present work N = 3 and N + 1 = 4.
The Cauchy form for (N+ 1)D continuum reads

[ρ∗a
j − P ij‖i] gj = 0, i, j = 1, . . . , N , (2.1)
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where ρ∗ is material density of the (N+ 1)D continuous media filling the ND shell.
One can call it “meta-density” in order to distinguish it from the 3D density already
identified as µ0. It is important also to note that neither ρ∗ nor µ0 have anything
to do with the density of matter (number density of solitons). Here gj are the orts

of the curvilinear coordinate system; P ij are the components of stress tensor; aj are
the components of the acceleration vector in the (N+ 1)D space; ‖i stands for the
covariant derivative in (N+1)D space. We do not consider here (N+1)D body forces.

Upon substituting the expressions for ‖i in terms of ND covariant derivatives
|α (see [15,16] and the extensions in [7]), the Cauchy balance law (2.1) is recast into a
system for the laminar components and a scalar equation for the N+1-st component.
After averaging (integrating) within the surfaces of the shell one gets to the second
order O(ε2) of approximation.

ρ∗ϕ
α −∇βσ

αβ = −2bαβq
β − bββq

α , (2.2)

ρ∗ϕ
N+1 −∇βq

β = bβνσ
βν − cβνm

βν + ρ∗F , (2.3)

where

qα =
1

h

∫

PN+1,α ds , σαβ =
1

h

∫

P αβ ds , mαβ =
1

h

∫

sP αβ ds,

ϕα =
1

h

∫

aα ds , ψα =
1

h

∫

saα ds , ρ∗F =
1

h
(PN+1,N+1

up − PN+1,N+1
lo ) .

Here the subscripts “up” and “lo” refer to the upper and lower shell surfaces s = h/2
and s = −h/2, respectively. It is taken into account that no tractions are exerted upon
the shell surfaces from the two adjacent (N+1)D spaces. The integrals are understood
as definite integrals in s between the shell surfaces while b and c are functions of the
“surface” coordinates only. The notation ∇ stands for a ND covariant derivative
in which the coefficients that may possibly depend on the transverse coordinate are
already averaged.

The system (2.2), (2.3) is coupled by the “momentum–of–impulses” which can
be derived from (2.1) to the same asymptotic order O(ε2) after multiplying it by s
and integrating across the shell, namely

−ρ∗ψ
α +∇βm

αβ = qα , (2.4)

which allows us to exclude the quantity qα from the governing system and to obtain

ρ∗ϕ
α = ∇βσ

αβ − 2bαβ∇νm
βν − bββ∇νm

αν , (2.5)

ρ∗ϕ
N+1 = ∇β∇νm

βν + bβνσ
βν − cβνm

βν + ρ∗F − ρ∗∇αψ
α . (2.6)

Here the notion of the geometrization of physics becomes transparent. If the
observer is confined to the ND space of the middle surface he will appreciate the
presence of the N + 1-st dimension as additional terms in balance law (2.5), (2.6)



378

which terms are not present in the Cauchy form for the ND continuous media.3 The
said terms are proportional to the different curvature forms and this is the quantitative
expression of Riemann–Clifford [17,18] idea that the physical laws are manifestation
of deformations of the geometrical space.

2.2. Elastic Shell with Momentum Stresses

According to the Kirchhoff-Love hypothesis, the displacements uα in the shell
space are related to the ND displacements ũα in the shell middle surface as follows

uα = ũα − s∇αζ, uN+1 = ζ , (2.7)

where ζ stands for the shape function of deformation (deflection) of the middle surface
in direction of (N + 1)-st dimension. This hypothesis is pertinent to the overall o(ε)
approximation since it amounts to neglecting terms proportional to s2. Then we
obtain

ϕµ =
∂2ũµ
∂t2

, ∇µψµ = −
h2

12

∂2∆ζ

∂t2
, ϕN+1 =

∂2ζ

∂t2
. (2.8)

The rotational inertia ∇µψµ is of second order which justifies neglecting it in com-
parison with the transverse inertia ϕN+1.

In terms of coordinates that are measured along the arcs of the middle sur-
face (precisely the material Lagrangian coordinates), the second fundamental form
assumes the following simple form

bαβ = ∇α∇βζ . (2.9)

Note that for coordinates not coinciding with the arcs, the expression of the second
fundamental form involves nonlinear terms.

It is time now to couple the Cauchy equations with constitutive relations.
Unlike the Cauchy form, the full nonlinear constitutive relations cannot be derived in
Eulerian framework. It goes beyond the framework of the present work to derive them
in full detail, especially as far as the material nonlinearity for the laminar components
is concerned. We resort here to linear constitutive relations in the form (see [19])

σαβ = (λ∗ + η∗)g
αβ(∇ν ũ

ν) + η∗∇
βũα , (2.10)

mαβ = −D∗∇
α∇βζ , D∗ =

η∗h
2

12
. (2.11)

where D∗ is called stiffness of shell. Here asterisks designate the (N+ 1)D material
properties. If the middle surface of gossamer is to behave as the Maxwell luminiferous
field then the following relations must hold true

λ∗
ρ∗

=
λ

µ0
,

η∗
ρ∗

=
η

µ0
,

D∗

ρ∗
=
D

µ0
.

3If one was lucky enough to have already the tensor analysis developed and the notion of contin-
uous medium (with its Cauchy balance) already established.
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Upon introducing (2.10), (2.11) into Cauchy equations (2.5), (2.6) we get for the
laminar components

µ0
∂2ũβ

∂t2
= (λ+ η)∇β(∇ν ũ

ν) + 2η∆ũβ

− D [ 2∇β (∇ζ · ∇(∆ζ) ) + (∆ζ)∇β∆ζ ] , (2.12)

and for the amplitude ζ of normal deflection in direction of N + 1–st dimension

µ0
∂2ζ

∂t2
= µ0F +D

[

−∆∆ζ + (∇β∇δζ)(∇
β∇µζ)(∇

µ∇δζ)
]

+
µ0

ρ∗
σβα(∇β∇αζ) . (2.13)

Here we shall not consider the case of nontrivial tractions on the shell surfaces which
requires additional assumptions about their asymptotic order. We keep, however, the
term responsible for the normal pressure (parameter F ).

If we develop with respect to the powers of the small parameter δ in the same
manner as in the previous section, we get from (2.12) and (2.10) that

∇β∇νu
ν = 0 +O(δ) =⇒ ∇νu

ν = κ0 = const =⇒
µ0

ρ∗
σαβ = σ0g

αβ , σ0 = ηκ0 ,

where κ0 is dimensionless divergence of the displacement field in the middle surface.
Note that k0 > 0 means uniform dilation of the middle surface, while k0 < 0 reflects
the case of uniform compression. Thus, in the lowest asymptotic order of δ we are
faced with uniform compression/dilation in the middle surface of gossamer and with
constant membrane stress σ acting in the middle surface. This allows to effectively
decouple the laminar deformations ũα from the deflection ζ even without requiring
special relation between the scales for ζ and ũ. In its turn the term in (2.13) containing
σαβ becomes simply σ0∆ζ . Because of the large dilational modulus, the laminar
deformations appear to be orthogonal to the transverse ones to the first asymptotic
order.

From here on the “tildes” denoting the laminar variables will be omitted with-
out fear of confusion.

2.3. The Dispersive Equation of Wave Mechanics

The only term which looks unusual in (2.13) is the cubic nonlinear term. How-
ever, in dimension one the equation under consideration is exactly the cubic nonlinear
Boussinesq equation. In order to benefit from the vast knowledge accumulated for
equations of type of Boussinesq, we replace in a paradigmatic fashion the cubic term
in (2.13) by (∆ζ)3. It is beyond doubt that the qualitative behaviour of the solutions
will be quite similar. However, the extent to which they will be quantitatively close
as well, remains to be verified. Then we arrive at

µ0
∂2ζ

∂t2
= µ0F +D

[

−∆∆ζ + (∆ζ)3
]

+ σ0∆ζ . (2.14)
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We render the last equation dimensionless by introducing the scales

ζ = Lζ ′ , x = Lx′ , t =
L

cf
t′ , cf =

√

σ0
µ0

≡ c
√

|k0| , (2.15)

where cf has dimension of velocity. Note that the scale for ζ and the length scale of the
localized wave coincide (the length L), if one looks for commensurable effects (balance)
of the nonlinearity and dispersion. This fits perfectly the original assumptions for
gossamer : small deflections of order L, unit strains and large curvatures of order
L−1. Finally, the dimensionless form of the wave equation of gossamer reads

∂2ζ ′

∂t2
= F ′ + β

[

−∆∆ζ ′ + (∆ζ ′)
3
]

+ sign[k0]∆ζ
′ , (2.16)

where β = D|σ0|
−1L−2 is the dispersion parameter and F ′ = FLµ0/|σ0| is the di-

mensionless value of the normal load (hydrostatic pressure). From here on the primes
denoting dimensionless variables are henceforth omitted without fear of confusion.
Eq. (2.16) is our “master equation of wave mechanics.”

Now β is the only intrinsic non-dimensional parameter and if it is significant,
then without loosing the generality it may be set equal to one. This defines the length
scale L of the particle-waves as

L ∼

√

D

σ0
∼

h
√

|k0|
=⇒ ε =

h

L
≃
√

|k0| .

The last relation shows that the model is applicable only if the longitudinal compres-

sion of the gossamer is of order of the main small parameter, namely ε ∼
√

|k0| ≪ 1.

Some remarks are due concerning the “master wave equation” (2.16). Its
linear part has the form originally proposed by Schrödinger (Eq. (4) from [20]).
Naturally, Schrödinger himself mentioned the analogy with the plate equation and
injected a remark in the cited paper. It was later on when the interpretation of the
wave function as probability distribution has been introduced and the now standard
form of the equation involving a complex wave function was introduced. In order to
distinguish the originally derived equation from the “canonical” form we call the linear
wave equation containing fourth-order dispersion Schrödinger’s Schrödinger Equation
(SSE). The derivation of Schrödinger was rather heuristic. Here we have arrived at
qualitatively similar equation but bearing in mind a “palpable mechanical construct.”
The wave function now has a simple meaning: the deflection of gossamer ’s middle
surface in direction normal to it (alongside of the (N + 1)-st dimension). These are
par excellence curvature waves envisaged by Riemann [17] and Clifford [18].

3. The Cosmos of Localized Structures in Gossamer (Dynamics of Patterns
in the Metacontinuum)

3.1. A Model for Loading the Metacontinuum

A way to achieve a homogeneous and isotropic loading of gossamer is to con-
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sider a large ND bubble (hypersphere) subjected to hydrostatic pressure from the
adjacent (N+ 1)D spaces. We call this hypersphere Universe. We assume that the
bubble is compressed from the outside (N+ 1)D (negative membrane stress in the
middle surface). A discussion on the case when the model of Universe is an inflated
bubble can be found in [7]. It is however, a kind of artificial since to get there the
familiar sech-solitons one has also to change the sign of the cubic term. Hence the
“inflated-bubble” model appears to have only heuristic significance. The motionless
(equilibrium) state is characterized by the balance between the membrane tension
and the hydrostatic compression creating a negative membrane tension in the middle
surface, namely

σ0
N

R
= −ρ∗|F| =⇒ k0 = −

|F|R

Nc2
< 0 .

Here R is the radius of the bubble made dimensionless by the scale L, and N is the
dimension of the middle surface of the gossamer (N = 3 for the physical Universe).

It is clear that the dimensionless force F must be small enough (of order
of the inverse of the dimensionless radius of Universe). We introduce the relative
displacement ζ̄ = ζ − R. Since we are interested in an Universe whose scale is much
larger than the size L of its particles then the dimensionless radius R is extremely
large. Hence its derivatives are very small and can be neglected in the cubic term.
For all purposes the shell can be treated as plane. Then Eq. (2.13) is reduced to the
following

∂2ζ̄

∂t2
= −∆ζ̄ + β[(∆ζ̄)3 −∆∆ζ̄] , (3.1)

and β = 1 without loss of generality.

3.2. Flexural Localized Structures—The Flexons

In the stationary case the localized waves under question have spherical sym-
metry and for them the following dimensionless boundary value problem in infinite
domain is posed

b− b3 +
1

rN−1

d

dr
rN−1 d

dr
b = 0, b→ 0 for r ≡ |x| → ±∞ , (3.2)

where b = ∆ζ is the curvature of the nontrivial transverse elevations/depressions.
The linearized version of Eq. (3.2) possesses along with the trivial solution a localized
non-trivial one (the sinc function):

ζ = ar−1 sin r , (3.3)

where a is an arbitrary constant. This means that a linear bifurcation takes place
which makes our problem different from the classical soliton problems where a hard
(nonlinear) bifurcation is at hand. The sinc-shape solution (3.3) has been just recently
interpreted as a “single event” of the Schrödinger equation [21]. In fact the present
work justifies using the dispersive master equation (or Schrödinger equation) not as
an equation for the probability density of a particle, but rather as a field equation (in
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the same fashion as sine-Gordon equation is used after [8]). It has to be pointed out
that in our model we do not impose the shape of the potential as it is usually done
in quantum mechanics.

We have solved (3.2) by means of an numerical algorithm based on the Method
of Variational Imbedding (MVI) developed in [22] with application to homoclinics of
Lorentz system (see also [23] for application to dissipative solitons). Because of the
slow algebraic decay of the tails of the solution the interval has to be truncated at
very large r. At the same time the grid has to be dense enough to allow resolving
the oscillations. The results presented here employ grids with up to 40000 points
and spacing 0.01. The solution turned out to be very sensitive to the mesh size and
the magnitude of the “actual infinity,” so some additional refinement could change
the the amplitudes of solitons presented in Fig. 1 with couple of percents. Typically
for nonlinear bifurcation problems, more than one nontrivial solution appear for the
same values of the governing parameters. The question of the number of non-trivial
solutions is of prime importance for the physical applications. Here we have found
solutions with discrete set of amplitudes. This result suggests that for larger ampli-
tudes the support of the main peak of the solution shrinks, i.e. the larger particles
have shorter Compton wavelength. With the increase of the amplitude the behaviour
of the solution in the origin r = 0 approaches r−1 which is a singular solution bringing
a balance between the second order operator and cubic nonlinear term in (3.2). The
physical significance of such kind of singular solutions is not yet understood in the
framework of the proposed here paradigm and we did not go for larger amplitudes.

We identify the obtained here flexural solitary waves of the governing equations
of gossamer as the particles . The fact that the metacontinuum is elastic does not
necessarily mean elastic interaction of the particles (see the demonstration of this
fact for the Boussinesq equation in [24]). As we show in what follows, the model
under consideration is a conservative one, but to prove that our flexural localized
waves live up to the definition of solitons is necessary either to find the two-soliton
solution of (3.1) or to demonstrate the interactions of flexons numerically. We have
done neither of these two things because the analytical techniques simply do not
work for negative membrane tension. At the same time the 1D reduction of our
model does not possess localized solutions. Numerical solution of a 2D problem
with the above mentioned requirements for the grid size in each direction would have
needed enormous computational resources. Until their solitonic properties are strictly
established we will call the localized waves discovered here flexons which carries also
a hint of their origin (flexural deformations or deflections).

As it will be seen later on, the amplitude of a flexon is directly related to the
mass of particle. Naturally, a flexon with negative amplitude will be an anti-particle.
The simplified Eq. (3.2) does not distinguish between particles and anti-particles.
However, in the original model of Universe a slight difference between particles and
anti-particles is to be expected due to to the curvature of the undisturbed bubble.
Either the particles or the anti-particles will have a better chance to appear depending
on which of them minimize the stored elastic energy of the shell.

One sees in Fig. 1 that the amplitudes (and hence—the masses) of flexons can
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Fig. 1. Flexon solution with small amplitudes (up) and large amplitudes (down).

be quite different. To excite a bigger flexon, one has to invest greater energy as initial
condition of the iterations. Respectively, in the iterative process some of the bigger
particles decay to smaller emitting part of their energy. In this instance, the situation
is qualitatively similar to relationship of nucleons and quarks.

3.3. Localized Shear Waves in the Middle surface: Torsion Solitons (Twistons)

Although the way we load the gossamer is the simplest one (a uniform hy-
drostatic pressure), it turns out that a complex “cosmological” picture appears with
host of different localized waves. Bifurcation and symmetry breaking does not affect
just the transverse deformation. Here we provide an example of what can happen
in the middle surface. Unfortunately the material nonlinearity has not yet been in-
corporated in the model and the linearized equations for laminar components remain
not closed due to the presence of the pressure-like term ∇ϕ. For that reason the
presented here solution has mainly qualitative heuristic bearing. By direct inspection
one finds that the vector

u =

{

x(z2 − y2)

(x2 + y2 + z2)
3

2

,
y(x2 − z2)

(x2 + y2 + z2)
3

2

,
z(y2 − x2)

(x2 + y2 + z2)
3

2

}

satisfies the “incompressibility condition” ∇ · u = 0. The vector lines corresponding
to this solution resemble much a vortex or a bundle. This deformation field creates
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an electric field given by

E =
12u

x2 + y2 + z2
,

which is singular in the origin. It decays at infinity as r−2 which is in accord with
the electromagnetic theory.

With the vortex-like solutions topological charges can be associated but it
goes beyond the scope of present work to give the details, moreover that different
topological charges can be defined and this still awaits its mechanical explanation.
We call the localized solutions of vortex type twistons in order to distinguish them
from the fluid vortices. The obvious symmetry of the linearized problem shows that
the charge can be positive or negative. Depending on their charges, two twistons repel
or attract each other (just as two vortices do). The latter means that the presence of
a twiston can only be experienced by another twiston. The neutral particles (flexons)
remain unaffected by the shear deformations in the middle surface of gossamer to
the lowest asymptotic order. However, the O(δ) coupling between the laminar and
transverse (flexural) deformations can cause a slight elevation (depression) of the
gossamer surface in the region of localization of a twiston. In other words, the
twiston has its own mass which can either be positive or negative and is much smaller
than the mass of the flexon (the neutral particle). By analogy one can call it “mass of
electron/positron.” Massive charged particles can be produced when a twiston “nests
on” a flexon and then the mass is the superposition of the amplitude of the neutron
(flexon) and the amplitude of the flexural deformation associated with the twiston
(positron or electron).

There is no much sense going on here with the details before the material
nonlinearity of metacontinuum is established. In addition, the singularity of vortex
solutions suggests that some higher-grade elasticity is to be admitted in order to
change the behaviour of the solution for r → 0, e.g., in the following fashion

∂2u

∂t2
+ Φ(∇u,∆u) = ∆u−∇ϕ− χ∆∆u , (3.4)

where Φ stands for the yet unspecified nonlinearity and χ is the dispersion coefficient.
Here a comment is due on the limiting speed of light. Clearly, the speed of light

is not a limiting celerity for a flexon. A truly neutral single particle should not be
affected by the speed of shear waves (light) as being orthogonal to shear deformation.
However, as far as the charged particles are concerned, the speed of light is indeed
the limiting speed because the twistons are solutions of the nonlinear wave equations
for the laminar components of displacements. Hence an atom containing charged
particles cannot exceed the speed of light since above it the charges (twistons) will
be disjointed from the flexural “humps” that carry them.

3.4. Density Solitons

Alongside with the flexural and torsion solitary waves, one must expect also
solitary waves connected with the compressibility of metacontinuum. Hence a quanti-
tative numerical solution for the density solitons has not been attempted by us. How-
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ever, some qualitative conclusions can be reached on the basis of the known properties
of the compression waves in solids. First of all, the speed of these waves is limited
by the speed of sound of the metacontinuum and the steepness of a density wave in-
creases with its celerity. This means that the swifter the movement of the wave—the
smaller its spatial extent. On the other hand, the density solitons are expected to
interact almost insignificantly with the matter (the flexons and twistons) and in this
instance they will resemble to a great extent the behaviour of the neutrino. This
qualitative description allows us to consider the all pervading compression/dilation
motion (orthogonal to the matter) as quite similar to what the ancient School of Stoa
called pneuma (see, e.g., [25]).

3.5. The Shell Membrane Tension or The Gravitation

According to the picture drawn here, the particles are localized elevations
(humps) of the gossamer surface. Due to the presence of a flexon of shape ζ situated
at certain geometrical position, the material points will experience attractive force
proportional to |k0|∇ζ . For a single flexon (see Fig. 1), this force will not be mono-
tone. The bare fact is that nobody has measured the gravitation force between two
elementary particles and it is not clear whether the attractive force is monotone in
the intra-atomic regions. In fact, the gravitation law is established only for bodies
(ensembles of flexons). So one has to consider only the flexural-deformation field as
averaged over the different positions of the particles-flexons. It is to be expected that
the total average is positive (attraction), since the positive humps of the flexon am-
plitude are larger than the negative. Taking the sinc-shape for qualitative purposes
one has approximately

ζ =
∑

xα∈DB

aα f |xα − x|

|xα − x|
≈

g

|x|
, g ∼ γ

∫

f(|xα|) dx , (3.5)

where DB is the region occupied by the body. Here it is acknowledged that |x| ≫ |xα|
and an assumption is made that the centers of particles are randomly distributed in
the region of body with number density γ. Note that if the flexons were strictly sinc-
shaped, then the constant g would have been equal to zero for randomly dispersed
atoms (integral of sine is zero). For a flexon obtained here g 6= 0 because its amplitude
in the origin is larger than of the sinc, so that after rescaling by |x| the flexon shape
gives for the integral in (3.5) a positive quantity.

Thus the force that is experienced by a material point of the gossamer is
proportional to ∇ζ ∼ G|x|−2, G = |k0|g and both ingredients of G have extremely
small values. The exact value of the “gravitational constant” G can be specified only
after the averaging procedure is performed with the appropriate rigor. The membrane
force acts to “pull” the material points of the gossamer towards the center of the
particle system under consideration. Thus we arrive at Newton’s inverse-square law
of gravitation which is a manifestation of the fact that the shell is a 3D continuum.

In fact, the attraction between particles arises out of the disturbances they
introduce in the uniform membrane anti-tension acting in the shell, i.e. we discover a
quantitatively reversed but philosophically identical picture to the concept of Mach
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that the gravitation is due to the interaction with the quiescent matter at the rim of
Universe. Here apply the words of Maxwell from the end of Part IV of [14] “. . . that
the presence of dense bodies influences the medium so as to diminish this energy
whatever there is a resultant attraction.” Indeed, the presence of humps over the
gossamer surface influences the medium so as to diminish the stored energy and there
arises a resultant attractive force.

In our model there is no place for gravitational waves because the membrane
tension is negative hence the deflection waves would propagate infinitely fast were the
dispersion not present. Bizarrely, the particles themselves can loosely be called “grav-
itational waves” since part of the forces constituting the particles is the gravitation
(membrane anti-tension). In other words, a particle is a localized nonlinear wave sus-
tained from the balance between the generating effect of the membrane anti-tension
on the one hand, and the restraining effect of the cubic nonlinearity and dispersion
on the other.

3.6. Dispersion and “Red Shift”

It is peculiar that the Boussinesq equation (3.4) possesses localized solutions
(see [24,26]) that propagate with the characteristic speed (photons?) and undergo
some aging (“red shift”) in the sense that their support increases while the amplitude
decreases. Far from the source, one cannot distinguish between the red-shifting due to
dispersion or to a Doppler (effect if present). This means that if a dispersion is present
then the “red shift” can be alternatively explained without the help of “Big-Bang”
hypothesis.

3.7. Estimating the Constants of Metacontinuum

The density of metacontinuum is the magnetic permeability µ0. It is well
known that the whole electrodynamics can be built without specifying the dimension
of µ0. In our paradigm it is exactly to be expected that way, since µ0 is a meta
quantity. Its dimension is not needed anywhere in the model and the density of
matter (being the number density of solitons) has nothing to do with it.

The shear Lamé coefficient η is the inverse of the electric permittivity ε−1. The
thickness of gossamer is proportional to Plank’s constant h ∼ h̄c−1µ−1

0 . If there is a
dispersion coefficient in the equations for laminar displacements it can be estimated
from the Hubble constant. The dilational Lamé coefficient λ can be estimated only
from an “acoustic” experiment in the metacontinuum.

4. Dynamics of Patterns in Metacontinuum

4.1. The Hamiltonian Formulation

Consider Eq. (3.1) in the domain D with boundary conditions for the wave-
amplitude ζ

ζ = ψ0(x) , ∆ζ = ψ2(x) , for x ∈ ∂D . (4.1)

The trivial boundary conditions correspond to an isolated system of wave-particles.
A Hamiltonian representation is readily derived upon multiplying (3.1) by ∆ζt and
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integrating over the infinite domain.

H ≡
1

2

∫

D

[

(∇ζt)
2 − (∆ζ)2 +

1

2
β(∆ζ)4 + β(∇∆ζ)2

]

dNx . (4.2)

For boundary conditions that do not depend on time, the total energy H is conserved
dH/dt = 0.

The energy functional (4.2) is not positive definite, but unlike the Boussinesq
wave equation the solution will not blow up in finite time since the quartic nonlin-
earity dominates the quadratic term saturating the growth of solutions. Although
the second-order term in (3.1) is of improper sign the equation is not unstable with
respect to short wave lengths because of the presence of fourth spatial derivatives
with the proper sign.

The wave mass and wave momentum are defined as

M ≡
∫ ∞

−∞
∆ζ dNx , P ≡

∫ ∞

−∞
ζt∇∆ζ dNx . (4.3)

The concept of pseudomomentum in continuum mechanics was elaborated re-
cently [27,28] especially in connection with the interpretation of localized waves as
“quasi-particles” and numerous featuring examples are presented in [29]. For this
model the meaning of mass is as “mass of curvature” which once again is in the vain
of Riemann proposal. The mass is conserved if ∂ζtt/dn = 0 at ∂D which is a natural
requirement for an isolated system. For the pseudomomentum we have

dP

dt
=

∮

∂D
n

[

−
1

2
(∇ζt)

2 −
1

2
(∆ζ)2 +

β

4
(∆ζ)4 +

β

2
(∇∆ζ)2

]

ds

−
∮

∂D
β(∇∆ζ)

∂∆ζ

∂n
ds = Fpsu , (4.4)

where Fpsu is called pseudoforce and n is the outer normal to the region D. The
pseudomomentum is conserved if the pseudoforce is equal to zero. Note that even for
an isolated system the pseudomomentum is not conserved if the localized patterns hit
the boundary and rebound.

4.2. From Metadynamics of Underlying Continuum to Dynamics of Centers of
Localized Structures

The main significance of the Hamiltonian formulation is that it provides the
means to build up the dynamical model for the discrete phase objects (solitons).
If the shape of localized wave is known, the Hamiltonian dynamics for the discrete
system of centers of “particles” can be derived from (3.1) with a good approximation
provided that they do not interact so strongly as to change appreciably their shapes.
For two localized waves the wave amplitude can be decomposed as follows:

ζ = F1(x−X1(t)) + F2(x−X2(t)) + F12(x−X1(t),x−X2(t)) . (4.5)

Here Fi are the shape functions of the waves–particles and Xi(t) are the trajectories
of their centers. When the particles are far from each other F12 is negligible. In fact
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F12 must be considered only in the cross-section of the collision of two particles and
we leave the problems connected with this case for future study.

Now the time derivative of each shape function can be expressed as follows

dFi

dt
= −∇Fi ·

dXi

dt
(4.6)

and the discrete Hamiltonian contains quadratic forms of the velocities of centers

∑

i

Ai · ẊẊ , (4.7)

where the matrix Ai is positive definite. Then (4.7) can be interpreted as definitive
relation for the kinetic energy of the center of particle. Respectively, F2 will con-
tribute a term which depends on the relative position of particles and plays the role
of potential of interaction. In absence of interactions, the Euler–Lagrange equations
for discrete system of centers of solitons give Ẍ = 0 and a soliton will propagate with
constant phase velocity. Thus for isolated particles the first Newton law is recovered.

4.3. FitzGerald-Lorentz Contraction and Contraction of Flexons

The FitzGerald-Lorentz contraction (FG–L, for brevity) is a standard feature
with the soliton solutions of generalized wave equations, e.g., SG, Boussinesq, etc.
It is especially well seen for the sine-Gordon equation where the “quasi-particles”
are called “relativistic”4 meaning that their contraction is exactly proportional to
the Lorentz factor. Naturally, the above discussed localized shear waves are subject
precisely to the same factor of contraction. This holds true also for the length scales
of interaction forces (e.g., the Coulomb force).

When a flexon propagates with a constant celerity V its measure in the direc-
tion of propagation must be shortened by the factor (see (2.15), (3.1))

(

1 + V 2/c2f
)− 1

2 , (4.8)

where cf is the pseudo-velocity corresponding to the negative membrane tension.
Respectively the amplitudes of flexons (related to their particle-wave masses) are
increased roughly by the same factor. Since cf is much smaller than the speed of
light, the contraction of flexons must be felt for smaller phase velocities than the
Lorentz contraction. On the other hand —contrary to the FG–L contraction—there
is no singularity in the expression of flexon contraction (4.8). However, the new type
of contraction is much less important for the contraction of the bodies since it only
affects the scale of gravitational interaction which is anyway the weakest and is not
important in defining the intra-atomic scales. Yet, it is quite possible that some small
effect could be felt due to the flexural contraction. It will not be a surprise if the

4Another specimen from the glittering panoply of coinages which is misleading in this context
since SG is a model of an absolute field
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weak but persistent deviations found in [30] from the nil effect of the Michelson-Morley
experiment turn out to be the result of this additional contraction.

5. A First-Order Experiment for Detecting the Doppler Effect

To use interferometry for verification of the Doppler effect was suggested by
Maxwell [31]. It was believed that discovering a Doppler effect will prove the existence
of an absolute medium at rest. The experiment was implemented first by Michelson
[32] and nil effect was observed. It was later on refined by Michelson and Morley [33]
(MM, for brevity) and the absence of the expected type of interference was confirmed
more decisively. In our opinion the nil effect of MM experiment cannot disprove the
existence of absolute medium because it seeks for a second-order effect in the small
parameter d = vec

−1 ≈ 10−4 (ve stands for the velocity of Earth with respect to the
quiescent medium). This was specially pointed out by Maxwell [31] way before the
experiment was performed. He proved that employing only a single ray with splitting
and reflections inevitably renders the sought effect of second order d2 because the
light travels along a closed path. The only conclusion that can be drawn from the
nil effect is that in the medium where the light is being propagated there occurs an
apparent contraction of the spatial scales in the direction of motion of the source
(FitzGerald-Lorentz contraction) proportional to the factor

1−
v2e
2c2

≈

√

1−
v2e
c2

which exactly compensates for the expected second-order effect.
In fact MM result strongly suggests the existence of an absolute medium be-

cause the FitzGerald-Lorentz contraction is a mandatory effect in a field theory based
on the nonlinear generalizations of the D’Alembert wave equation (see the comments
in a preceding section). Thus the soliton paradigm provides a most natural explana-
tion of the nil effect of MM experiment. If the “material bodies” (e.g., the arms of
the interferometer) are bound states of solitons, then they are contracted in the di-
rection of motion because the solitons themselves and the inter-soliton distances are.
The latter are defined mainly by the electromagnetic forces whose length-scales also
suffer contraction. Hence the distance that must be traveled by the light through the
quiescent metacontinuum between two soliton formations (the emitter and receptor),
is indeed shorter in the direction of motion in comparison with the path traveled in
transverse direction.

Note that the metacontinuum itself is not contracted and that is why the
speed of light has a constant value in each coordinate system connected with the
propagating objects—solitons .

The real proof of the presence of a metacontinuum would be an experiment
for the first-order effect. Such an experiment can only be achieved if two different
sources of light are employed with sufficiently synchronized frequencies. There are
available in the market lasers with the required stabilization (e.g., the HeNe Model
200 of Coherent Components Group) but it goes beyond the frame of the present
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work to present the details on hardware. As the sought effect is of order of 10−4 then
if the two sources are synchronized up to 10−6, the accuracy would be of order of 1%.
In this sense we will call such sources “identical.” Here we give in Fig. 2 the principle
scheme of a possible first-order experiment.

laser I -

6

�
� mirror I (semi-transparent)

interference zone

laser II�

6

@
@mirror II

Fig. 2. Principal scheme of the interferometry experiment.

We deliberately exclude from consideration any kind of non-optical experiment
and leave beyond our scope the optical experiments in dense matter (water filled
columns, etc.). Consider two “identical” sources of monochromatic light which move
together in the same direction with the same velocity. The first of them emits a
plane wave propagating in the direction of motion of and the second one—in the
opposite direction. By means of a mirror and a semi-transparent mirror the two
plane waves are made co–linear. The beam of the second laser is reflected by the
mirror II changing its direction on 90◦ and made to pass through a semi-transparent
mirror whose reflecting surface serve to change the direction of the beam of first laser
on 90 ◦. Beyond the semi-transparent mirror the two beams are parallel and can
produce an easily discernible interference stripped pattern. A snapshot of the region
of interference would reveal strips of different intensity gradually transforming into
each other and the modulation frequency can easily be measured.

It is interesting to note that Jaseda et al. [34] already used two lasers in
interferometry experiment in order to quantitatively verify the FG–L contraction, but
in their experiments the lasers beams were parallel (aiming to verify quantitatively
the contraction) while in the proposed here experiment they are anti–parallel since
now it is not the contraction that needs verification, but the very existence to the
first-order of Doppler effect.

For the sake of self-containedness of the paper we outline here the derivation
of Doppler effect (see also [35]). The harmonic waves propagating in presumably
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quiescent medium are given by the following formula

F±(x, t) ≡ ei(krx∓ωrt) , k± =
ωr

c
, λ± =

c

ωr

, (5.9)

where ω± are the frequencies. The upper sign in the notations refers to the wave
propagating in positive direction, while the lower sign—to the wave propagating in
negative direction. These waves have to satisfy the boundary condition on the moving
boundaries (the sources)

F±(±vet, t) ≡ eiω0t , (5.10)

where ve is the velocity of the moving frame relatively to the metacontinuum. Re-
spectively, if the sources were at rest, then they would have produced waves with
wave number k0 = ω0/c and wave length λ0 = k−1

0 . The boundary condition (5.10)
yields the following relation for the parameters of the propagating wave:

ω± = ω0

(

1∓
ve
c

)−1

k± =
ω0

c

(

1∓
ve
c

)−1

λ± = λ0

(

1∓
ve
c

)

. (5.11)

The role of the mirrors is to change the direction of propagation of each
wave without destroying its plane nature. After the reflection, the two waves are
propagating as planar waves in the positive direction of z-axis (vertical in Fig. 2):
F±(z, t) ≡ ei(k±z−ω±t). Then in the interference region one has a wave which is the
superposition of two of them for a given moment of time (say, t = 0) so that

ℜ [F+(z, t) + F−(z, t)] = 2 cos

(

k+ + k−
2

z

)

cos

(

k+ − k−
2

z

)

, (5.12)

which is a modulated wave with a wave number of the carrier 1
2
(k++k−) = k0+O(d

2)

and with a wave number for the modulation 1
2
(k+ − k−) = dk0 +O(d3). Respectively

the expressions for wave lengths valid to the second order, are λ0 and λm = λ0d
−1.

For red-light lasers the length of the wave is λ0 ≈ 6.3 ·10−5 cm and then for the length
of modulation wave one has λm = 0.63 cm and the strips produced must be easily
detectable on an optical table of standard dimensions.

Alternative way around is to look for the fringes formed on the semi-transparent
mirror. The length scale of a fringe would be around 6.3 cm for the red light and the
laser beams should be expanded so as to cover a region of 40-50 cm when they reach
the semi-transparent mirror.
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6. Quasi, Pseudo, Meta: Concluding Remarks

From the point of view of soliton paradigm, the notion of discrete versus con-
tinuous (wave–particle dualism) is revisited. As a featuring example a very thin layer
of Hookean elastic medium of very large dilational modulus is considered: a special
kind of N -dimensional shell called gossamer . It is shown that the linearized equa-
tions for the laminar displacements have as a corollary the Maxwell equations for
appropriately defined quantities called electric and magnetic fields. A higher-order
dispersive and nonlinear Boussinesq equation is derived for the flexural deformations
of gossamer (“master” equation of the wave mechanics). Its linear part is the lin-
earized Schrödinger equation. Due to the conservative properties of the “master”
equation, the flexural solitary waves (flexons) appear to be solitons. We call “Soli-
ton Paradigm” the conceptual framework in which the solitons are identified as the
particles, i.e. there is no dichotomy between particles and waves. A particle (or
corpuscles) is a notion to signify our perception of the geometry and dynamics of a
localized wave (“lump” of deformations, stress, energy, etc.) of metacontinuum. The
Hamiltonian properties of wave-mechanics equation (the metadynamics) define the
Hamiltonian (Newtonian) dynamics of the phase objects (particles-solitons). Thus
the de-Broglie wave-particle duality is a matter of observation and perception: we are
faced with a unique object—a localized wave, which is perceived either as a corpus-
cular object (in fact its center of wave-mass) or as a wave. Particles-Solitons are not
moving through the metacontinuum, rather they are phase patterns propagating over
it without disturbing its contiguity. Hence no aether-drift effect will be associated
with the motion of a particle-soliton. A possible experimental set-up is proposed for
verification of this concept.

Solutions of the “master” equation (called flexons) are obtained numerically by
means of Method of Variational Imbedding. Localized torsional structures of integer-
valued topological charge are discussed qualitatively and identified as charges . It is
shown that the membrane tension in the gossamer creates attractive force (gravita-
tion) between the large ensembles of localized flexural deflections-particles which is
proportional to r1−N .

The concept of unification based on metacontinuum and soliton paradigm
gives:

– Maxwell Equations for the stress interactions in the middle surface of the gos-
samer ;

– Dispersive equation (Schrödinger’s Schrödinger equation) for the wave function
of the transverse flexural deformations alongside the fourth spatial dimension;

– Gravitation as membrane (anti) tension in the middle surface;

– Charges as vortex-like solutions.

and can be summarized as follows
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Metacontinuum
⇓

Particles (Localized Waves — Solitons)
and Fields (Derivations of Stress- and Strain-fields of metacontinuum)

⇓
Hamiltonian-Lagrangian Formalism

⇓
Newtonian mechanics of “point particles” (centers of solitons)

⇓
Mechanical continua (approximation for ensembles of particles)

The unification here is not only for the forces of interaction (the different
fields), but it also fuses the Wave-particle duality into Particle-Wave unity subordi-
nating the concept of a particle (corpuscle) to the one of localized phase patterns
engendered by the balance between the membrane anti-tension and the nonlinearity
and dispersion of the “master” equation of wave mechanics.
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