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STRICT IMPLEMENTATION OF LYAPUNOV FUNCTIONAL AND PATTERN
ANALYSIS IN SWIFT-HOHENBERG NONUNIFORMLY FORCED DYNAMICS

JOSE PONTES*, C. I. CHRISTOVT, R. R. ROSA#, F. M. RAMOS$, C. RODRIGUES NETOY, AND E. L.
REMPEL

Abstract. Using the operator-splitting method Christov & Pontes (2000, 2001) developed a second-order in time
implicit difference scheme for solving the Swift-Hohenberg equation (S-H) which describes pattern formation in Rayleigh-
Benard cells. For each time step the scheme involves internal iterations which improve the stability and increase the accuracy
with which the Lyapunov functional for S-H is approximated. Different cases of pattern formation were treated and it was
shown that the new scheme reaches the stationary pattern several times faster than the previously used first-order in time
schemes. In this work we review the main steps concerning the derivation of the second-order in time scheme the demonstra-
tion that the scheme strictly satisfies a discrete approximation of the Lyapunov functional. Results of numerical simulations
conducted in three large boxes with nonuniform forcings across the box are presented, illustrating that this scheme preserves
the non-increasing time-dependent behaviour of the functional. The results are compared with a simulation conducted in
a uniformly forced system. The rate of change of the functional is generaly slow save the pecipituous downfalls during the
time intervals in which the pattern changes qualitatively.
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1. Introduction. A widely accepted model for the thermal convection in a thin layer of fluid heated
from below is the so-called Swift-Hohenberg equation (SH, for breivity) (Swift & Hohenberg, 1977)
which is a nonlinear parabolic equations containing fourth-order space-derivatives (generalized diffusion
equation). It describes the pattern formation in fluid layers confined between horizontal well-conducting
boundaries.

Unlike the models that describe wave propagation on the surface of convective layer, the SH equation
possesses a Lyapunov functional which ensures the potential behaviour of the solution. Among other
properties of the potential evolution is that one cannot have spatio-temporal chaos, but only spatial one.
However, if one uses a difference scheme which does not faithfully represent the Lyapunov functional one
might encounter numerically some non-physical effects. For instance, when the Lyapunov functional is
only approximately enforced, then initially the solution approaches one of the attractors in the functional
space but eventually leaves the domain of attraction of that particular steady-state solution after being
“kicked” from one of the small disturbances the latter arising from the inadequate approximation. Then
the solution may keep wandering between several of the attractors exhibiting spatio-temporal chaotic
behavior which is not possible for the original model.

Solving SH numerically is a challenge because of the interplay between the higher-order diffusion
(higher-order spatial derivatives) and nonlinearity on the one hand, and the presence of a Lyapunov
functional — on the other. A computationally efficient difference scheme for SH was developed by Christov
et al (1997) where a first-order in time implicit time-stepping is used in the framework of the operator-
splitting methods.

There are very few papers in the literature which deal with the problems connected to the numerical
implementation of an additional integral constraint on the solution, such as the Lyapunov functional.
For the case of Lyapunov constraint in a conservative system (such as Nonlinear Schrodinger equation)
one is referred to the work of Ivonin (1999). Though some fine approximations of the additional in-
tegral constraint are presented in the above mentioned papers, they are not in fact strictly preserving
approximations. We believe, the strict implementation is crucial if one is to deal with more complex
models.

* Metallurgy and Materials Engineering Dept — EE/COPPE/UFRJ, PO Box 68505, 21945-970 Rio de Janeiro RJ,
Brazil jopontesQufrj.br

T Dept. of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 christov@louisiana.edu

# LAC-INPE P. O. Box 515 12201-970, S. José dos Campos, SP, Brazil reinaldo@lac.inpe.br

§ LAC-INPE P. O. Box 515 12201-970, S. José dos Campos, SP, Brazil fernando@lac.inpe.br

T LAC-INPE P. O. Box 515 12201-970, S. José dos Campos, SP, Brazil camilo@lac.inpe.br
I LAC-INPE P. O. Box 515 12201-970, S. José dos Campos, SP, Brazil erico@lac.inpe.br



José Pontes et al

In this work we review the main steps concerning the derivation of the second-order in time scheme
and prove that the scheme strictly satisfies a discrete approximation of the Lyapunov functional (see also
Christov & Pontes 2000, 2001). The scheme employs internal iterations to secure adequate approximation
of the nonlinear term. Results of numerical simulations conducted in four large boxes are presented,
illustrating that this scheme preserves the non-increasing time-dependent behaviour of the functional.

2. Posing the Problem. Consider a rectangular region D : {x € [0,L,,], y € [0,L,]} with
boundary 0D at which different types of b.c. can be imposed. Consider the following Generalized
Diffusion Equation (GDE):

ou

i —D(A 4+ £%)? 4+ F(u) = —DAAu — 2Dk*Au — D&* + F(u) . (2.1)
For the cubic nonlinearity one has the following potential function
__dU(w) _ 3 _ e®) 5 g4
F(u)=— T =e(x)u—gu’, U(u)=-— 5 U +4u . (2.2)

Eq.(2.1) with (2.2) acknowledged is the Swift-Hohenberg equation (SH, for brevity) derived for the
Rayleigh-Bénard convection to account for the formation of convective rolls in high Prandtl number
fluid layers. The variable u(z,y,t) describes the horizontal planform of the temperature deviation from
the conductive profile.

The correct set of lateral b.c. is the one which secures that the evolution of the “energy” [ 12 depends
only on its production or dissipation in the bulk, but not on the surface. In other words, in the balance
equation for the evolution of energy

il/ Udedy = _7{ vwdl—% a4(x,y,t)Av@dl_7{ a2($,y,t)v%dl—
@2 b on oD on aD on
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one has to make the surface integrals vanish. This can happen if one of the following admissible b.c.
conditions are imposed
_Ov ov _ 0Av
YSon on  on
where n stands for the outward normal direction to the boundary 0D. We call (2.3); and (2.3) “gener-
alized Dirichlet conditions” of the first and second kind, respectively. The condition (2.3)3 involves only
derivatives at the boundary, hence the coinage — “generalized Neumann condition”.

The main feature of (2.1) is that the damping of perturbations occurs via the fourth-order spatial
derivatives, while the term with second-order spatial derivatives enhances the perturbations. This allows
the occurrence of a linear bifurcation of the solution for certain values of the parameters and/or the size of
domain. The nontrivial solutions branch out from a (generally motionless) reference state. Their shapes
are the result of the interplay between the complicated linear operator and the nonlinearity. From the
perspective of GDE it is clear that a bifurcation can take place only for sufficiently large domains whose
size is commensurate with the length scales of the patterns.

SH admits a non-increasing Lyapunov functional

0, v=Av=0, 0, (z,y) € 0D, (2.3)

P = / {—%uQ + %u4 + g [(Au)® = 26 (Vu)? + £'u?] } dz dy, (2.4)
D
i 2
(23_15:_/D<88_?> dzdy <0, (2.5)

which rules out the complex temporal or spatio-temporal behavior in the long time (turbulent, oscillatory,
or chaotic) and allows formation of steady convective patterns. In their turn these steady patterns can
be quite complicated in shape, e.g., spatially chaotic.

Consider the rectangle € [0, L,], y € [0, L,] and the Dirichlet b.c. of the first and second kind:

_ Ou _ Ou

u-a—x:Oforz:O,Lﬁ; u-a—yZOforyZO,Ly, (2.6)
0%*u 0%u
u:@:Ofor:ﬁ:O,Lﬁ; u:a—y2:Ofory:0,Ly, (2.7)
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Respectively, the Neumann condition is

2 2

%:%:0 for =0, L, g—Z:g—;:O for y=0, Ly, (2.8)
There is no restriction to use mixed types of b.c. which are combinations of Dirichlet and Neumann
conditions. If the scheme and algorithm perform properly for the “pure” cases (including the Neumann
one), then they will do the same for the mixed cases, since any admissible (in the sense of (2.3)) mixture
of boundary conditions yields a well posed boundary value problem. For the sake of simplicity we restrict
ourselves in the present work to Dirichlet conditions of the first kind.

3. Difference Scheme.

3.1. Implicit Time-Stepping. It is not possible to achieve a strict satisfaction of a discrete version
of the Lyapunov functional with an explicit scheme which has only two time stages (levels). On the other
hand, it is not obvious how the problem can be solved through using multi-level scheme. It is a-priori
clear that a scheme which is both implicit in time and nonlinear will possess the necessary symmetry to
accommodate for the existence of a non-increasing functional. The key to the scheme which satisfies the
additional integral constraint (the Lyapunov functional) is the approximation of the nonlinear potential
term. A scheme for (2.1) which is implicit and nonlinear reads

un+1 —un D _8_4 B 8_4 B 2k2— B 2k2ﬁ .y 84 B k4 un+1 + B U(un+1) _ U(Un)
T or*t oy* ox? Oy? 0x20y? 2 untl —yn

b

(3.1)

where U(u) stands for the potential of the nonlinear force acting upon the system. For the particular
case of quartic potential the nonlinear term adopts the form:
U™ —U@") _ e(z)

_ n+1 n g n+1\3 n+1\2 n n+1 ny2 n\3
wrt —an 2[“ +U]—Z[(U )P+ (W2 u" T (W) 4 (W)’

3.2. Internal Iterations. The scheme (3.1) is nonlinear and can be solved only by means of iter-
ating the solution within a given time step. Additional benefit from the iterations is that they allow us
to alleviate a possible problem connected with the inversion of the linear operators when they are not
negative definite. This kind of complications can be expected only when max{L,, Ly}ko > «, where
a can be estimated from the inclusion theorem. As already mentioned, a simple consequence of the
non-definiteness of the linear operator is the occurrence of a linear bifurcation of the stationary problem.
We tackle this complication by means of an explicit approximation of the second-order terms. Thus the
iterative scheme reads

un,k+1 —un 84 84 un,k+1 4+ yn 82 82
— =|-D— - D— — Dk'| ——————+|-2Dk* == — 2Dk*> ——
T [ Ox* oyt K } 2 +[ K ox? K oy
84 umk + un g n n n n n g n
2D8w28y2 +5(m)] — [(u ,k)2+u oy, +(u )2] u ,k+1_1(u )3_ (3.2)

Here the superscript (n, k + 1) designates the current (“new”) iteration of the unknown set function while
the indices (n, k) and (n) distinguish the quantities known from the previous iteration and the previous
time step, respectively. The scheme with internal iterations is linear for u™**1. The internal iterations
are conducted until the following criterion is satisfied

max ||un,K+1 _ un,K”

max |Ju™ K+

< 0, (3.3)

for certain k = K. Then the last iteration gives the sought function on the new time stage, u™*! ef
un,KJrl .

The gist of the concept of internal iterations is that the same time step is repeated until convergence.
Since the iterative process begins from an initial condition which is the value of the sought function from
the previous time step, the number of internal iterations needed for convergence depends heavily on the
magnitude of the time increment 7. For smaller 7 the initial condition for the iterations is closer to the



José Pontes et al

sought function and the number of iterations is expected to be small. The trade-off is that a very small
T requires a larger number of time steps which increases the overall number of arithmetic operations
per nodal point. Conversely, an inappropriately large 7 will bring about a larger number of internal
iterations per time step increasing significantly the computational time needed to achieve a single time
step dispelling thus the advantage of the larger “strides” (the faster time-stepping). The dependence of
the number of internal iterations on 7 is nonlinear and leaves a room for optimization. Our numerical
experiments show that the calculations are cost effective if the number of internal iterations is in the
interval 4 < K < 16. This estimate calls for a reduction of the time step when faster processes are
treated for which the evolution from a given time stage to the next time stage involves a significant
deformation of the field. This means that when faster temporal transients are involved, the usage of
larger time steps 7 leading to K > 20 is not justified regardless to the fact that formally speaking the
implicit scheme is still stable.

3.3. The Splitting. The inversion of the matrix of Eq. (3.2) is a rather costly procedure even
though it is sparse. The 3D case is drastically more expensive. Moreover that the internal iterations
require the process to be repeated several times during each time step. Then it is only natural to introduce
operator splitting in order to minimize the operations per unit iteration and hence per one time step.

We settle here for the second Douglas scheme (Douglas, 1956) (also called “scheme of stabilizing
correction” (Yanenko, 1971) which gives the full-time-step approximation for non-commutative operators
and is more robust for nonlinear problems than ADI (see Yanenko, 1971) for a review of the splitting
schemes and strategies). Another advantage of the stabilizing correction is that for linear problems in
3D it is absolutely stable, while ADI is not. We generalize the Douglas scheme for fourth-order operators
and modify it to be second order accurate in time (a Crank-Nicolson type of scheme) as follows

U — U,n &~ k 1 84 84 g 2 1
= L+ Loy + 2 [_D@ B Da_y4 — Dk* + 3 (u")”] u" + B [~Lia — L1 — L] [u™F 4 u"]
n,k+1 _
% — Lg’k(un’kJrl _ un)
where
Ln’k déf _28_4 _ 2k4 + g I:(u’ﬂ,k)2 + un,kun + (un)2:| (3 4)
H 2 0zt 4 8 '
nkdef DO D, g k)2 & 2] , (@)
T L (U IR GO R (33
def ot def , 02 e(x) def , 02 e(x)
Lis = 2D——— L = 2Dk* — + —= Ly = 2Dk* — + —= 3.6
12 920y2 1 92 + 9 2 dy? + 2 (3.6)

Christov et al (2001) showed that the splitting scheme approximates the desired scheme in full-time
steps within the adopted order of approximation O(72). This demonstration will not be repeated here.
Thus, employing a splitting does not degrade the temporal approximation of the scheme. In other words,
the splitting scheme coincides with the original scheme within the order of approximation of the latter.

4. Implementation of the Lyapunov Functional. After the iterations converge one has u"*! =
u™F+1 = 4™* and hence one arrives at a nonlinear scheme in full-time steps which is exactly the difference
approximation of scheme (3.1) when in the latter the operators L are replaced by their standard second-

order representations in finite differences, A (see Christov et al, 1997), namely

un+1 —um un-i—l 4y U un+1 _U(u™
T (All + A22 - Al —_ AQ + 2A12) + ( 3 ( )
T 2 un+ —un

, (4.1)

where

U™ -U@") _ ¢

yntl — qyn 2 [

un—i—l +un] + % [(un+1)3 + (un+1)2un +un+1(un)2+(un)3] .

Note that in the left-hand side we neglected the O(72) contribution to the operator B as asymptotically
vanishing with respect to unity (See also Christov and Pontes 2001).
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Upon multiplying eq.(4.1) by (u;; ntl_ ufy)/T and taking the sum over the spatial indices one obtains
M-1N-1 un+1 2 M-1N-1 R R p . A
’.7 _ n+1 n+1
= Z Z {27[ uiy ) = (uiy) } ~ 4 [(ui,j ) = (uiiy) ]}
=2 j=2 =2 j=
M—-1N-—1 n+] n n+1 un‘
+ z; 2 ) BTNy Ay — Ay — A2+2A12]% (4.2)
=2 j=

The last term is manipulated using integration (summation) by parts and the discrete form of bound-
ary conditions for u (2.6), (2.7) are acknowledged. We demonstrate the procedure on the difference
operators in z-direction and for A1y we get

M—1
n+1 n+1 def D n+1 [, nt+l n+1 n+1 n+1 n+1
Z“ A ~onis Do it [t A 4 6ul T — Al ]
i=2 T =2
_ D Z n+1[n+1 _ 4yl +6n+1 4n+1+n+1]
=T 9hAr Wij— [Wimg,j = 2Wj—q,; T OU Uit1,j T Wit
T
D M—1
_ n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
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T =2
D
n+1l n+1 n+1 n+1 n+1_ n+1 n+1 n+1
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.’E
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T
M—1 n+1 n+1 n+1
2 n+l -
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2h4T M—1j 2 27 h2 '
x i=2 x
Similarly for A;
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= Ton2, i %i-1, irj i+1,5
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Making use of the same technique on can show that

1 . 1
+1 n+1 n+1 n+1 n __
Z E u”Allu A11U i,j 0, E UZ]AQQU ij AQQUZ"]' = 0,
i u A u""‘1 u AU =0 R ul A u""‘1 um AU =0
o7 2 "t Ui Mtlij =1 QT ij 112 Ui Aatti; =1

In the same vein are treated the terms connected with the y spatial derivative. The approximation
of the mixed fourth derivative make use of the above derivations in both z- and y-direction. We denote

Uij—1 — 2Uij + Uijr
h2

¢ij =
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Then
M-—1 M-—1
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1] hQ - 1] h2
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1
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Now it is readily shown that the right-hand side of (4.2) is the time difference of the Lyapunov
functional ¥

2
gntl _ gn M-1N-1 n+1 —ul,
MLy (M =
Jj=

i=2

M—-1N-—1 1 o M—1N-1 [ pn 2 2
3 2 g 4 Dk 2 2Dk ui+1 7 ’U,Z] U; ¥ i—1,j
Py = |:—— u™. + = ult. + — ult. :| — 2 2 d
zz S+ )+ B ) - S S [ .
M—-1N-1
Uij1 ~ Ui 2+ up; —uf; ) LD ufyy ;= 2l o uf = 2ul )
hy I h2 =

The last formula presents a O(7? + h2 + h2) approximation to the original Lyapunov functional (2.5)
for the differential equation. The important point about difference version of the Lyapunov functional
(4.5) is that it is strictly enforced provided that the internal iterations converge. Its satisfaction does not
depend on the truncation error.

5. Numerical Results. The main subject of the present work is to demonstrate the impact of
the implementation of the Lyapunov functional on the numerical dynamics. As featuring examples we
consider four situatiuons: two systems forced with a bifurcation parameter which varies linearly along
the direction parallel to one of the sidewalls. The third case comprises a system forced with a gaussian
distribution of epsilon, the sidewalls being kept at an undercritical level. The fourth case consists of an
uniformly forced configuration.

Before all we should mention that we checked the spatial and temporal discretizations on a simple case
when the whole domain of the flow is occupied by a single convective cell. All mandatory tests involving
doubling the temporal and spatial resolutions confirmed the second-order approximation of the scheme
and the discrete implementation of the Lyapunov functional. The convergence of the internal iterations
is tested for different values of the tolerance ¢ defined in eq. (3.3). The quantitative differences between
the patterns are negligible for § < 10~°. This allows us to choose § = 1076,

In this work we present the results of four numrical simulations conducted in a box with size L, = 50
and L, = 50, with a spatial grid containing 302 x 302 points (Figure 6.1 was run in a 30 x 30 box with
a mess containg 302 x 302 points. The first two simulations were conducted with a forcing £ = 0.25 and
two different random initial conditions whereas we adopted € = 0.5 in the other two and same initial
conditions used in the former ones. The results of these four simulations are summarized in Figs. (5.1)
and (6.1).

For the sake of definiteness and backward compatibility with the works from the literature we select
ko = 3.1172, g = 12.9, and D = 0.015 which values correspond to a typical Rayleigh-Bénard convection
with pattern formation (see, e.g. Swift & Hohenberg, 1977). When the size of the box is L, = L, = 50,
the selected value for kg allows roughly 50 convective cells in each direction. A staggered mesh with
302 x 302 points is used which gives a spatial resolution of approximately 6 points per convective cell (12
points per wavelength). The time step used in all simulations was 7 = 0.02.

The random initial condition is constructed by means of a random generator. The value of u in the
first point (lower-left corner) is calculated with the random generator for a given initial seed and then the
rest if the grid points are filled row-wise using the previous point as a seed for the next point. Finally,
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the initial field is renormalized to [-1,1]. Thus, the pattern can be referred by the number of the initial
seed. We assess the rate of evolution of the pattern during the simulation by monitoring the relative L,
norm defined as
1 i — ]
= - ZiJ |un+1| s
which roughly corresponds to the ratio between the spatial average of the modulus of time derivative u;
and the spatial average of the modulus of the function itself.
The calculations begin from the

random initial condition and pro-
ceeded until L; < 5 x 1077 (except
simulation shown in Fig. 6.1a), when
it can be assumed that the motion
is virtually steady. In all simulations
the Lyapunov functional¥(¢) and L,
rapidly decrease at the very begin-
ning of the evolution. In this stage
most of the spectral content of the
random initial condition is filtered 10
and only wavelengths close to kg sur- 5

. . 3 10° +
vive. The second stage is charac-
terized by elimination of defects, re- 10! ﬁ
sulting in longer correlation lenghts. 0 25000 50000 75000 10 0 10000 20000
The phase of the patterns evolve with

I, (5.1)

minor changes in the average ampli- " 12 r 1w 12 i

tude. The Lyapunov functional de- é o i é ° |

creases at a much lower rate and S 6 1 g 6 7

L; norm evolves slower. However, = 37 1 =3 ]
0 0

the evolution of L; is not monotoni- 0 25000 50000 75000 0 10000 20000
cal and accelerates when defects col-
lapse. This behaviour is precisely
captured by the sudden increases of  _ 10 1410 1
the norm L;(¢) and abrupt decreases

10 r B 10 r B

10° | 1 100 | 1
in the Lyapunov functional.
i 107 : : 10”7 :
We monitored also the number of 0 25000 50000 75000 0 10000 20000
internal iterations. In the time in- t t
tervals of slow evolution, the num- (a) (b)
ber of internal iterations is around FI1GURE 5.1. Results obtained in two simulations run in a 50 x 50 bozx

with a bifurcation parameter varying linearly along the horizontal sidewalls.
L. _6 . Case (a): € wvaries from 0 at the left sidewall to 0.50 at right one. Case
nal precision 10 (Figs.5.1a,b and (b): ¢ varies from 0 to 1.0. This figure shows the steady-state patterns, the
6.1b). By specifying a higher preci- time evolution of the associated Lyapunov finctional, the number of internal

sion the number of internal iterations éterations accoplished in each time step and time evolution of Li. Specified
. . precision for the internal iterations: 10~6. Random initial condition seeds
Per ‘step rapldly increases, as shown were generated in an IBM SP2 RISC 6000 using the random function and
mn Flgs.6.la. seed 123/56.
The simulations confirm the ten-

dency of the rolls to align with a wall at which the bifurcation parameter is zero or negative, as can be
seen in Figs. (5.1-6.1). The effect of increasing the forcing e applied to the system is also shown in the
figures higher forcings lead to a higher density of defects and shorter correlation lengths due to the fact
that a wider band of wavelengths becames linealy unstable. On the other hand the system forced with a
gaussian distribution of ¢ shows a lower level of defects, when compared with the other cases.

1-3 in simulations made with inter-

6. Conclusions. In the present work we review and applied the operator-splitting difference scheme
proposed by Christov and Pontes (2000, 2001), for the numerical solution of nonlinear diffusion equations
containing fourth-order space-derivatives. The scheme is of second-order approximation both in time and
space and does not contain artificial dispersion, hence the disturbances are quickly attenuated. It is fully
implicit owing to the use of internal iterations. The main characteristic of the scheme is that a discrete
version of the Lyapunov functional which holds for the original quation is strictly implemented.
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The performance of the scheme is
demonstrated for the evolution of the
solution of the Swift-Hohenberg (SH)
equation in four simulations con-
ducted in large boxes with two forc-
ing levels and two different random
initial conditions. The SH equation
models the Rayleigh-Bénard convec-
tion in a horizontal layer. The strict

LT

implementation of the Lyapunov 10" £ ] 102 i )
functional with its non-increasing be- 10° ¢ 1 181 i 1
haviour is clearly demonstrated. The >0t 1 e b |
numerically obtained Lyapunov func- 10° \ 1 10:: - .
tional decreases more rapidly when 10" ‘ 10° ¢ .

L L
s 0 20000 40000 60000 0 10000 20000 30000
the pattern undergoes qualitative

changes (when the solution enters the

immediate vicinity of the respective _é 20 1 _é ° |
attractor). In all cases the evolution I 15 ! | @ 6 i
ended up in a spatially chaotic pat- 2 2 3 ]
tern. No temporal chaos was possi- 10 ‘ ‘ 0 ‘ ‘

0 20000 40000 60000 0 10000 20000 30000

ble due to the strict satisfaction of

the Lyapunov functional. . w0t | |
The proposed difference scheme 001 |

can serve as a model for constructing 107 |- 10_5 i |

approximations to nonlinear physical K\/‘\ 107 r )

-5 -7

L1

iti i 10 ‘ ‘ 10 ‘ ‘
SyStem when addltloniﬂ constralr.lts, 0 20000 40000 60000 0 10000 20000 30000
such as Lyapunov functional, are im- t t
posed on the solution. (a) (b)
7. Acknowledgements. The IGURE 6 Results obtained in a simulation run in a 30 X 30 bozx

i X with a gaussian distribution of the bifurcation parameter across the box
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grant No. 452399/00_9(NV)_ Part of Case (a) was run in a P-III-600 and case (b) was run in a IBM SP2 RISC
6000. In both cases the random initial condition was generated using the

the simullations was performed in the !
random function and seed 123456.

IBM SP2 RS-6000 of the NACAD-
UFRJ Computer Center at the Federal University of Rio de Janeiro, Brazil.
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