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Abstract-In this paper, we consider a nonlinear generalized diffusion equation called the Swift- 

Hohenberg equation (SH) for which a Lyapunov functional is known. We develop a computationally 
efficient second-order in time implicit difference scheme based on the operator-splitting method. 
Internal iterations are used to make the scheme both nonlinear and implicit. We prove that the scheme 

allows strict (independent of the truncation error) implementation of a discrete approximation of the 
Lyapunov functional. The new scheme is used to investigate the pattern formation from random 
initial conditions, and spatially chaotic states are found. @ 2001 Elsevier Science Ltd. All rights 
reserved. 

Keywords-Nonlinear systems, Lyapunov functional, Implicit finite difference schemes. 

1. INTRODUCTION 

A widely accepted model for the thermal convection in a thin layer of fluid heated from below 

is the so-called Swift-Hohenberg equation (SH, for brevity) (11, which is a nonlinear parabolic 

equation containing fourth-order space-derivatives (generalized diffusion equation). It describes 

the pattern formation in fluid layers confined between horizontal well-conducting boundaries. 

Unlike the models that describe wave propagation on the surface of convective layer, the SH 

equation possesses a Lyapunov functional which ensures the potential behaviour of the solution. 

Among other properties of the potential evolution is that one cannot have spatio-temporal chaos, 

but only spatial ones. However, if one uses a difference scheme which does not faithfully rep- 

resent the Lyapunov functional, one might encounter numerically some nonphysical effects. For 

instance, when the Lyapunov functional is only approximately enforced, then initially the solu- 

tion approaches one of the attractors in the functional space, but eventually leaves the domain 
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of attraction of that particular steady-state solution after being "kicked" from one of the small 
disturbances, the latter arising from the inadequate approximation. Then the solution may keep 
wandering between several of the attractors exhibiting spatio-temporal chaotic behavior, which 

is not possible for the original model. 
Solving SH numerically is a challenge because of the interplay between the higher-order diffusion 

(higher-order spatial derivatives) and nonlinearity on one hand, and the presence of a Lyapunov 
functional on the other. A computationally efficient difference scheme for SH was developed in [2], 
where a first-order in time implicit time-stepping is used in the framework of the operator-splitting 

methods. 
There are very few papers in the literature which deal with the problems connected to the nu- 

merical implementation of an additional integral constraint on the solution, such as the Lyapunov 
functional. For dissipative systems (Swift-Hohenberg or complex Landau-Ginzburg equation), an 
elucidating discussion can be found in [3,4]. For the case of Lyapunov constraint in a conservative 
system (such as nonlinear SchrSdinger equation), one is referred to [5]. Though some fine ap- 
proximations of the additional integral constraint are presented in the above mentioned papers, 
they are not, in fact, strictly preserving approximations. We believe the strict implementation is 

crucial if one is to deal with more complex models. 
In the present work, a finite-difference semi-implicit coordinate-splitting scheme of second 

order in time and space is developed for SH equation subject to generalized Dirichlet boundary 
conditions. The proposed scheme employs internal iterations to secure adequate approximation 
of the nonlinear term. It is proved that the scheme strictly satisfies a discrete approximation of 

the Lyapunov functional. 

2. P O S I N G  T H E  P R O B L E M  

Consider a rectangular region D : {x E [0, Lx, ], y E [0, Lu] } with boundary OD at which 
different types of b.c. can be imposed. Consider the following generalized diffusion equation 

(GDE): 
Ou - D (A + 42)2 + F(u )  =- - D A A u  - 2 D a 2 A u  - D a  4 + F(u ) .  (2.1) 
Ot 

For the cubic nonlinearity, one has the following potential function: 

(x g u 4 (2.2) F(u )  - dU(u)  _ e (x )u  _ gu 3, U(u)  - E 2 )  u2 + -4 " 
du 

Equation (2.1), with (2.2) acknowledged, is the Swift-Hohenberg equation (SH, for brevity) de- 
rived for the Rayleigh-Bdnard convection to account for the formation of convective rolls in high 
Prandtl number fluid layers. The variable u(x,  y, t) describes the horizontal planform of the 

temperature deviation from the conductive profile. 
The correct set of lateral b.c. is the one which secures that the evolution of the "energy" f v 2 

depends only on its production or dissipation in the bulk, but not on the surface. In other words, 

in the balance equation for the evolution of energy, 

---IDdtd 21 v 2 dx  dy = - ~o v On dl - ~oDaa(x,y,t)AvO-~nndl 

_  oa (x,y,t)v dZ_ f oo(x,y,t)( v) dxdy (2.3) 

fo a (x, t)(Vv) dxdy- f .  ao(X, ,t)v d dy, 
one has to make the surface integrals vanish. This can happen if one of the following admissible 

b.c. conditions are imposed: 

Ov Ov OAv = O, (x, y) • OD, (2.4) v =  On = 0 '  v = A v  O, On = On 
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where n stands for the outward normal direction to the boundary dD. We call (2.4)i and (2.4)~ 

“generalized Dirichlet conditions” of the first and second kind, respectively. Condition (2.4)s 

involves only derivatives at the boundary, hence, the coinage “generalized Neumann condition”. 

The main feature of (2.1) is that the damping of perturbations occurs via the fourth-order 

spatial derivatives, while the term with second-order spatial derivatives enhances the perturba- 

tions. This allows the occurrence of a linear bifurcation of the solution for certain values of the 

parameters and/or the size of domain. The nontrivial solutions branch out from a (generally 

motionless) reference state. Their shapes are the result of the interplay between the complicated 

linear operator and the nonlinearity. From the perspective of GDE, it is clear that a bifurcation 

can take place only for sufficiently large domains whose size is commensurate with the length 

scales of the patterns. 

SH admits a nonincreasing Lyapunov functional 

*I= S{ -;u’ + ;u” + ; [(Au)~ - 2~~(Vu)~ + 6’u2] dzdy, 
D 

dxdy<O, 

(2.5) 

(2.6) 

which rules out the complex temporal or spatio-temporal behavior in the long time (turbulent, 

oscillatory, or chaotic) and allows formation of steady convective patterns. In their turn, these 

steady patterns can be quite complicated in shape, e.g., spatially chaotic. 

Consider the rectangle x E [0, L,], y E [0, &,I and the Dirichlet b.c. of the first and second 

kind: 

au 0 
U=dZ=' 

for x = 0, L,; u2=o 
aY ' 

for y = 0, L,, 

a2u u=- 
6x2 

= 0, for x = 0, L,; ?I=dz"=O 
ay2 1 

for y = 0, L,, 

Respectively, the Neumann condition is 

au 
ax 

??f = 0 - = ax2 ) 
for x = 0 L 

au a% 
, 2, dy=dy2 = 0, for y = 0, L,, 

(2.7) 

(24 

cw 
There is no restriction to the use of mixed types of b.c. which are combinations of Dirichlet 

and Neumann conditions. If the scheme and algorithm perform properly for the “pure” cases 

(including the Neumann one), then they will do the same for the mixed cases, since any admissible 

(in the sense of (2.3) mixture of boundary conditions yields a well-posed boundary value problem. 

For the sake of simplicity, we restrict ourselves in the present work to Dirichlet conditions of the 

first kind. 

3. DIFFERENCE SCHEME 

3.1. Implicit Time-Stepping 

It is not possible to achieve a strict satisfaction of a discrete version of the Lyapunov functional 

with an explicit scheme which has only two time stages (levels). On the other hand, it is not 

obvious how the problem can be solved through using multilevel scheme. It is a priori clear 

that a scheme which is both implicit in time and nonlinear will possess the necessary symmetry 

to accommodate for the existence of a nonincreasing functional. The key to the scheme which 

satisfies the additional integral constraint (the Lyapunov functional) is the approximation of the 

nonlinear potential term. A scheme for (2.1) which is implicit and nonlinear reads 

_’ ’ 
, I 

$I+1 - un ’ 
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where U(U) stands for the potential of the nonlinear force acting upon the system. For the 

particular case of quartic potential, the nonlinear term adopts the form 

- u bn+l) - u (u”) _ “2”’ [p+l + g] _ 9 [ (Q+l)3 + (,n+l)2 Un + Un+l (q2 + (u”)3] . 
un+l - p 4 

3.2. Internal Iterations 

Scheme (3.1) is nonlinear and can be solved only by means of iterating the solution within a 

given time step. An additional benefit from the iterations is that they allow us to alleviate a 

possible problem connected with the inversion of the linear operators when they are not negative 

definite. This kind of complication can be expected only when max{L,, L,}lcs 2 CY, where Q: can 

be estimated from the inclusion theorem. As already mentioned, a simple consequence of the 

nondefiniteness of the linear operator is the occurrence of a linear bifurcation of the stationary 

problem. We tackle this complication by means of an explicit approximation of the second-order 

terms. Thus, the iterative scheme reads 

p&+1 _ Un - Dd” - Dk4 + E(X) 
1 

+k+l + un 
= 

7 aY4 2 

d4 
-2Dk2-& - 2Dk”? _ 2D- __(__ 

I 

?_Pk + ?_Ln 

dY2 
(3.2) 

dx2dy2 2 

9 -- 
4 

[ (un,k)2 + $J$n + (u”,2] +k+l _ ; (q3 

Here the superscript (n, k + 1) designates the current (“new”) iteration of the unknown set func- 

tion, while the indices (n, k) and (r~) distinguish the quantities known from the previous iteration 

and the previous time step, respectively. The scheme with internal iterations is linear for u”,‘+‘. 

The internal iterations are conducted until the following criterion is satisfied: 

(3.3) 

for certain k = K. Then the last iteration gives the sought function on the new time stage, 
@+l dzf p,K+l 

The gist of the concept of internal iterations is that the same time step is repeated until conver- 

gence. Since the iterative process begins from an initial condition which is the value of the sought 

function from the previous time step, the number of internal iterations needed for convergence 

depends heavily on the magnitude of the time increment 7. For smaller 7, the initial condition for 

the iterations is closer to the sought function and the number of iterations is expected to be small. 

The trade-off is that a very small r requires a larger number of time steps which increases the 

overall number of arithmetic operations per nodal point. Conversely, an inappropriately large 7 

will bring about a larger number of internal iterations per time step, increasing significantly the 

computational time needed to achieve a single time step, thus dispelling the advantage of the 
larger “strides” (the faster time-stepping). The dependence of the number of internal iterations 

on T is nonlinear and leaves room for optimization. Our numerical experiments show that the 

calculations are cost effective if the number of internal iterations is in the interval 4 < K < 16. 

This estimate calls for a reduction of the time step when faster processes are treated for which 

the evolution from a given time stage to the next time stage involves a significant deformation 

of the field. This means that when faster temporal transients are involved, the usage of larger 

time steps T leading to K > 20 is not justified regardless of the fact that, formally speaking, the 

implicit scheme is still stable. 
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3.3. The Splitting 

The inversion of the matrix of equation (3.2) is a rather costly procedure even though it is 

sparse. The 3D case is drastically more expensive. Moreover, the internal iterations require the 

process to be repeated several times during each time step. Then it is only natural to introduce 

operator splitting in order to minimize the operations per unit iteration, and hence, per one time 

step. 
We settle here for the second Douglas scheme [6] (also called “scheme of stabilizing correc- 

tion” [7]), which gives the full-time-step approximation for noncommutative operators and is 

more robust for nonlinear problems than AD1 (see, [7] for a review of the splitting schemes and 

strategies). Another advantage of the stabilizing correction is that for linear problems in 3D, it is 

absolutely stable, while AD1 is not. We generalize the Douglas scheme for fourth-order operators 

and modify it to be second-order accurate in time (a Crank-Nicolson type of scheme) as follows: 

ii - un -= 
I- 

Ly;“C + L;&P + ; 
[ 
-D& - D$ - Dk4 + E(2) + ; (dy2 I un 

+ f i-L12 - Ll - L2] [ok + ZP] ) (3.4) 

un,k+l _ ij 

7 

= ,q” (g&+1 _ p) , 

where 

L 
n,k def D d4 
11 = -2s 

- $k4 + ; [(g’k)’ + g,‘$n + cuy2] + d$ 

L n,k def D a4 
22 = --4 

‘2 dY 
_ 34 + ; [(u”‘k)2 + OkU” + (uy] + y, (3.5) 

def a4 
L12 = 2D- ax2ay2' 

In order to show that the splitting 

rewrite (3.4) as follows: 

L1 dgf 2Dk2& L2 %f 2Dk2z 
ay2' (3.6) 

scheme approximates the original implicit scheme, we 

[ 
E - 7Lyik 1 [ ii= E+TL;;~ 1 u” + ; [-L12 - Ll - L2] [Ok + u”] 

--- - k4 + E(X) + ; (zP)~ 1 VP, (3.7) 

E - 7L;ik I nk n g,k+l = 6 - TL,i u . 
Now we are prepared to eliminate the intermediate variable ii. This is done after applying 

the operator [E - TL;i”] to the second of equations (3.7) and adding the result to the first one, 

namely, 

[ 
E _ TL;;k 

I[ 
E _ &$jk 

I 
@+l = E+TL~$]u~-T [E-TL;jk] Lyikun 

+ ; [-~512 - LI - ~521 [unsk + u”] + ; -& - $ - k4 + E(X) + ; (u-)~] un, 

or else, 

E + +2,y,kLn,k 
I 

p&l _ un 

11 22 
= 

7 
(Lyik + L!$) Unlk+l + ; [-Ll2 - Ll - L2] [Ok + u”] 

+f _D$ _D? 
(3.8) 

w 
- Dk4 + E(Z) + ; (u”)~ 1 un. 
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Upon acknowledging (3.5),(3.6), it is readily shown that (3.8) is, in fact, (3.2) save the positive 

definite operator of norm larger than unity 

B z E + 72Ln*kLn,k 
11 22 = E + 0 (r”) , (3.9) 

acting upon the time difference (un+’ - u”)/‘r. Acting upon the time difference means that the 

operator B has no influence on the steady-state result. The fact that jlBl\ > 1 means that the 

splitting scheme is more stable than the original implicit scheme. The splitting scheme approx- 

imates the desired scheme in full-time steps within the adopted order of approximation 0(r2). 

Thus, employing a splitting does not degrade the temporal approximation of the scheme. In other 

words, the splitting scheme coincides with the original scheme within the order of approximation 

of the latter. 

3.4. Spatial Discretization 

Consider a staggered mesh in both spatial directions, namely, 

xi = -$ + (i - 1) h,, h, E L, 
M-2’ 

yi = - + + (j - 1) h,, h, s A, 

where M, N are the number of points in x- and y-directions, respectively. Let @i,j be an arbitrary 

set function defined on the above described mesh. We confine ourselves to the case of constant 

coefficients. Then the simplest symmetric difference approximations of the differential operators 

read 

- 4@i,j+l+ 6% j - 4@i,j-l+ cPi,j_2 a44, def 

% = -Day4 
= L22@, 

kZ@i,j = -A [‘i+l,j+l - 2Gi+l,j + Qi+l,j-1 - 2(@i,j+l - 2cPi,j + ~i,j_1) 

I ZJ 

ad+ 
+ %+l,j+l - 2%+1,j + @pi+I,j_I] x -D----- 

asay 
+Af L&, 

&,Q = 2Dk2 “e+ltj - 2;ili + @i-l,j x 2Dk2 E Sf L2@, 

AyvQij = 2Dp ‘i&l - ‘fi,j + @&j-l 

ax2 

x 2Dk2 ?? dsf L @ 
I ay2 l . 

(3.10) 

Here, the notation A stands for the discrete approximation of the respective operator L. 

On the staggered mesh, all kinds of b.c. are easily approximated with second-order approxi- 

mation, namely, 

Ulj + U2,j = 2u 12=iJ> us,j - u2,j - ul,j + uo,j M 2h$$ ( _ , 
X-O 

au 
UM,j - UM_l,j Z h, - 

,a% 

ax d,’ 
U3j - 3U2j + 3Ulj + Uoj x6h,- 

6x3 I=o’ 

uA4-1,j f uM,j w 2u Iz=~,, 
a% 

uM+l,j - UA4,j - UM-1,j +UM-2,j =2h”,G 7 (3.11) 
x=L, 

U2,j - Ul,j x h au 
a3U 

x ZG z=o’ 
uM+l,j - 3UM,j + SUM-l,j + UM-_2,j --6hzs , 

s=L, 

for j = 3,. . . , N - 2, 
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and 

W,l + Ui,2 = 2U IzI=l)’ 

~4~ - ql = h 
dU 
- 

y aY y=o’ 

%,N-1 + Ui,N = 24+ Ui,N+l - Ui,N - ui,N-1 + Ui,N-2 z2h2 - 
y aY2 

, (3.12) 
y=L I/ 

‘Ili,N - ‘Ui,N-1 X h 
au 
- 

y aY y=L ’ 
‘&,N+l - h&N + 3’&,N-1 + ‘&,N-2 x6h3 d321 

II y aY3 7 y=L I 

~i,3 - Ui,2 - Ui,l + ui,o Z2h2 fi 
g aY2 y=o’ 

Ui,3 - 3Ua,2 + SUi,l + Ui,o x6h3 fi 
1/ aY3 @’ 

a% 

fori=3,...,N-2. 

Hence, the approximations of the Dirichlet b.c. of the first kind read 

Ulj = uzj = 0, UMj = uM__lj = 0, 

Uil = Ui2 = 0, ‘LLiN = UiN-1 = 0. 
(3.13) 

4. IMPLEMENTATION OF THE LYAPUNOV FUNCTIONAL 

After the iterations converge, one has u*+’ = unlk+’ = untk, and hence, one arrives at a 

nonlinear scheme in full-time steps which is exactly the difference approximation of scheme (3.1) 

when, in the latter, the operators L are replaced by A, namely, 

un+l - un 

7 
= (iill + A22 - A1 - A2 + 2A12) “““2” Un - ’ (@-;i 1 zcun), (4.1) 

where 

u (un+l) - u (IP) = -- 
p+l - un 

; [un+l + u”] + ; [(un+y3 + (un+y2 un + unfl (dy + (q”] . 

Note that in the left-hand side, we neglected the O(T~) contribution to the operator B from (3.9) 

as asymptotically vanishing with respect to unity. 

Upon multiplying equation (4.1) by (u;” - uG)/ r and taking the sum over the spatial indices, 
one obtains 

n 2 

- %j 
7 1 

[All + A22 - AI - A2 + 2A12] +12+ %. 

(4.2) 

i=2 j=2 

The last term is manipulated using integration (summation) by parts and the boundary con- 

ditions for u (3.11),(3.12) are acknowledged. We demonstrate the procedure on the difference 

operators in z-direction, and for All, we get 

[u;$?~ - 4u;:& + 611;;’ - 4u;;rrj + u;+fil,j] 

(4.3) 
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= --& y [2u;&rju;-filj - 4$5&j+l + 6+u;,t1 - 4r$&rju;;‘] , , 1 1 
I 2=2 

D 

[ 
n+l n+1 

-uMj uM-2j 
n+l nfl n+1 nfl 

- - 
2hi-r 

- u&f-ljuM-3j - u4j u2j 
n+l n+1 

- u3j ulj 1 
1 

(4.3(cont.)) 

D 
M-l 

=-- 
c 

2r +2 

Similarly, for AI, 

, M-l 

n+l ui+l,j - 2Utj+l + Ur-+‘lj 
2 

h: I. 
I -- c 

. 27 i=2 

Making use of the same technique, one can show that 

n+l _ 
u;Allui,j U~?‘A11U~j = O, 

n+l _ 
u$ A22Ui,j u;+lA22u;j = 0, 

n+l _ 
U~hlUif U;~lhlU~j = 0, uy2u~jf1 - u;?‘A~u;~ = 0. 

The terms connected with the y spatial derivative are treated in the same vein. The approxima- 

tion of the mixed fourth derivative make use of the above derivations in both x- and y-direction. 

For the sake of convenience, we denote 

@j = 
Ui,j-1 - 2Uij + Uij+l 

h; 

Then 

M-l 
@i_l,j - 2Qi.j + @i+lj 

M-l 

c uij = C @ij 
Ui_lj - 2Uij + Ui+lj 

h2 
h2 

i=2 I i=2 5 

+ 
UA4-lj@Mj - ulj@pZj UMj@M-lj - uZj@lj 

hZ 
+ 

h2 

M-l 

s C @ij 

Ui-lj - 2Uij + Ui+lj 
h2 7 

i=2 I 
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and hence, 

95 

M-l N-l M-l N-l 
2 c c uijA12uij = 2 c c W-1,j - F2ij + W+lj . %-l - F: + uij+le 

i=2 j=2 i=2 j=2 I Y 

Now it is readily shown that the right-hand side of (4.2) is the time difference of the Lyapunov 

functional 9, 

n+l 2 
ipfl _ ip ui,j 

=- 
7 

QEr” = My N2 [-; (utj)2 + ; (UZj)4 + $ (u:j)‘] 
i=2 j=2 

-- (4.5) 

+ p MslNc [ “?+1,j - 7 + &,j + qj+1 - 2;p + u&-l]2. 
2=2 j=2 I Y 

The last formula presents an O(r2 + hz + ht) approximation to the original Lyapunov func- 

tional (2.6) for the differential equation. The important point about a difference version of the 

Lyapunov functional (4.5) is that it is strictly enforced provided that the internal iterations 

converge. Its satisfaction does not depend on the truncation error. 

5. NUMERICAL RESULTS 

The main subject of the present work is to demonstrate the impact of the implementation of the 

Lyapunov functional on the numerical dynamics. As a featuring example, we consider a uniformly 

loaded (nonramped) system. From the point of view of dynamical systems, the behavior of the 

solution is essentially the same as of the ramped system [2], and the only differences are connected 

with the fact that larger number of solutions with different symmetries can take place for the 

uniformly loaded system. 
First, we should mention that we checked the spatial and temporal discretizations on a simple 

case when the whole domain of the flow is occupied by a single convective cell. All mandatory tests 

involving doubling the temporal and spatial resolutions confirmed the second-order approximation 

of the scheme and the discrete implementation of the Lyapunov functional. The convergence of 

the internal iterations is tested for different values of the tolerance 6 defined in equation (3.3). 

The quantitative differences between the patterns are negligible for 6 5 10m5. This allows us to 

choose 5 = 10e6. 
Further on, we consider a situation with nontrivial pattern evolution. In order not to overload 

the presentation with too many complicated patterns, we consider a uniformly forced system 

of relatively small size L, = 10 and L, = 10 (referred to in what follows as 10 x 10 case). 

We chose large enough bifurcation (forcing) parameter E = 1, which ensures that the system 

dynamics is nontrivial. The small system size keeps the required computational resources within 

the reasonable limit, while the relatively large bifurcation parameter secures that the flow regime 

becomes spatially chaotic. 
For the sake of definiteness and backward compatibility with the works from the literature, we 

select ~0 = 3.1172, g = 12.9, and D = 0.015 which values correspond to a typical Rayleigh-Benard 
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convection with pattern formation (see, e.g. [I]). When the size of the box is L, = L, = 10, the 
selected value for ka allows roughly nine convective cells in each direction. A staggered mesh with 
82 x 82 points is used, which gives a spatial resolution of approximately ten points per convective 
cell. 

The random initial condition is constructed by means of a random generator. The value of u 
in the first point (lower-left corner) is calculated with the random generator for a given initial 
seed and then the rest if the grid points are filled row-wise using the previous point as a seed 
for the next point. Finally, the initial field is renormalized to [-1, 11. Thus, the pattern can be 
referred by the number of the initial seed. 

The time evolution of the pattern is presented in Figure 1. 

t=o 

Figure 1. 

t=8 

t=2 

t = 180 

t=5 

Top row: initial condition seed 34512, 7 = 0.04. ,Middle row: initial 

condition seed 34512, T = 0.2. Bottom row: initial condition seed 23456, 7 = 0.04. 

The two upper rows of panels in Figure 1 are obtained with the same initial condition (seed 
34512), but with different time increments T = 0.04 (the top row of panels) and 7 = 0.2 (the 
middle row). The lowest row presents the evolution for 7 = 0.04 when the calculations begin 
from a different initial condition (seed 23456). We have performed calculations with different 
time increments and for T 5 0.04, and the results are graphically indistinguishable. The results 
show significant dependence on the time increment (in the sense that the final stationary pattern 
is qualitatively different) only for 7 2 0.1. Clearly, due to the truncation error of scheme, the 
two different time increments present two different routes to two different stationary solutions 
(compare the last two panels in the upper two rows of Figure 1). Still another stationary solution 
is reached when starting from the initial condition with seed 23456 (the lower row of panels in 
Figure 1). 

We assess the rate of evolution of the pattern during the simulation by monitoring the rela- 
tive L1 norm defined as 

L1 = LCi,j I”FT’ - uzjl 

7 ci,j Iun+ll ’ (5.1) 

which roughly corresponds to the ratio between the spatial average of the modulus of time 
derivative it and the spatial average of the modulus of the function itself. 



Swift-Hohenberg Equation 97 

1 

0.1 1 

1 I 1 
Ll 

! 
norm - 

.---I._ 
0.01 r 
0.001 r 

0.0001 7 

le-05 r 

1e-06 p 1 
18-07 t , I I I 1 

1 2 5 10 20 30. 50 100 500 

t 

-154 I , 
Lyapunovfunctional - 

-156 - 

-158 - 

-160 
t 1 

-162 - 

-164 - 
-166 I I 

1 2 5 10 20 30. 50 100 500 

t 

Figure 2. Seed 34512: Ll(t) (upper panel) and q(t) (lower panel) curves for T = 0.04. 
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Figure 3. Seed 34512: L1 (t) (upper panel) and U(t) (lower panel) curves for T = 0.2. 

The calculations began from a random initial condition and proceeded until Li 5 5 x 10e7, 

when it can be assumed that the motion is virtually steady. 

Let us begin with the first case in Figure 1. Initially, the system displays a focus near the bottom 

of the domain. For times between 20 I t I 40, it abruptly disappears provoking a precipitation of 

the value of the Lyapunov functional Q(t) (lower panel of Figure 2). The evolution of the pattern 

accelerates at this moment, as precisely captured by the sudden increase of the norm Li(t) (upper 

panel of Figure 2). 

We also monitored the number of internal iterations. In the time intervals of slow evolution, 

the number of internal iterations is around two to three. As expected, this number increases 
in the time intervals of rapid evolution (the same intervals in which the Li norm increases). 

For instance, in the first case, the number of iterations is two for t > 10 and increases to four 
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Figure 4. Seed 23456: L1 (t) (upper panel) and @l(t) (lower panel) curves for T = 0.04. 

around t M 29.6. The second case begins with ten iterations and near T = 180, their number 

decreases down to four and goes up again to eight iterations in the region of fastest evolution, 

t M 188.65. The number of iterations in this case is larger than for the previous case because 

the time increment r = 0.2 is five times larger, which automatically requires a larger number of 

internal iterations. 

As already mentioned above, the bifurcation nature of the problem shows up when a relatively 

large time increment is chosen r = 0.2 and the evolution takes a rather different path in the 

phase space, ending up in another stationary pattern. The evolution of L1 and Q in this case 

are presented in Figure 3. Once again the streamlining and simplification of the pattern are 

connected with sharp precipitations in the Lyapunov functional. 

As a third example, we present the evolution of the pattern beginning from a different initial 

condition. Figure 4 shows the Li-norm and the Lyapunov functional as functions of time t. The 

quantitative behavior is similar to the previous two cases, but the stationary pattern is different. 

In addition, the fronts in L1 and \k are not as steep in this case. Respectively, the number of 

iterations is three for 1 < t 2 5 and increase just to four for t M 5.5 (when the changes take place 

in this case). 
Manipulating the initial condition, we succeeded in obtaining a plethora of solutions. It goes 

beyond the framework of the present paper to present an exhaustive study of the different end- 

stage chaotic steady states. 

6. CONCLUSIONS 

In the present work, we have created an operator-splitting difference scheme for the numerical 

solution of nonlinear diffusion equations containing fourth-order space-derivatives. The scheme is 
of second-order approximation both in time and space and does not contain artificial dispersion, 

hence, the disturbances are quickly attenuated. It is fully implicit, owing to the use of internal 

iterations. The main characteristic of the scheme is that a discrete version of the Lyapunov 

functional which holds for the original differential equation is strictly implemented. 

The performance of the scheme is demonstrated for the evolution of the solution of the Swift- 

Hohenberg (SH) equation. The latter models the Rayleigh-Benard convection in a horizontal 

layer. As a featuring example, we treat a domain of moderate size (10 x lo), but with relatively 

large value of the loading parameter which triggers the bifurcation of a plethora of different 
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regimes. We present here three different cases of temporal evolution from a random initial 

condition. The strict implementation of the Lyapunov functional with its nonincreasing behaviour 

is clearly demonstrated. The numerically obtained Lyapunov functional decreases more rapidly 

when the pattern undergoes qualitative changes (when the solution enters the immediate vicinity 

of the respective attractor). In all cases, the evolution ended up in a spatially chaotic pattern. 

No temporal chaos was possible due to the strict satisfaction of the Lyapunov functional. 

The proposed difference scheme can serve as a model for constructing approximations to non- 

linear physical system when additional constraints, such as the Lyapunov functional, are imposed 

on the solution. 
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