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Abstract. In this paper, the 2D stationary-propagating localized solutions of Boussinesq’s equation
are investigated numerically. An algorithm for treating the bifurcation and finding a nontrivial
solution is created. The scheme is validated employing different grid sizes and different size of the
box that contains the solution. The results obtained show that there is pseudo-Lorentzian elongation
of the scale of the solitons but it is only in the direction transverse to the propagation velocity. In
longitudinal direction the scales are slightly contracted, so kind of “relative” contraction takes place.
Results are shown graphically and discussed.
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INTRODUCTION

Localized waves that propagate without change of shape at long distance and/or for long
times are called solitary waves. They were first observed by Russell [1, 2] who named
the phenomenon “The Great” or “The Permanent” wave. Since then, permanent waves
have been found in many other fields of modern physics, such as metal lattices (phonon
propagation), optical fibers, Bose–Einstein Condensate etc.

Boussinesq [3, 4] proposed an equation to model the permanent wave, considering
shallow water layer with much smaller thickness compared to the horizontal length
scale of the motion. He showed that the balance between the nonlinearity and disper-
sion maintains the shape of the permanent wave. Various Boussinesq equations were
proposed during the years (see, e.g. [5, 6] for the literature).

Zabuski and Kruskal [7] showed numerically that two solitaty waves can interact
without losing their identities and coined the name “soliton” to delineate the particle-like
behavior of these waves (see [8] for the story). Several analytical techniques have been
developed for solving soliton problems of different nonlinear dispersive equations, such
as Bäcklund transformation, Inverse Scattering Method, and Hirota Bilinear Method
(see [9] for extensive review on the subject). The limitations of analytical techniques
necessitate the development of different numerical techniques and an extensive literature
is available on this subject. However, the predominant part of the known results are
concerned with the 1D cases. In this short note we investigate numerically the shapes of
the stationary solitons in two spatial dimensions.

We focus here on the so-called “good” (or “proper”) Boussinesq equation (PBE):

utt = ∆(γ2u+αu2−β∆u) (1)

whereβ > 0 is the dispersion parameter,α is the amplitude parameter, andγ is the
characteristic speed of the small disturbances (linear waves).
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In 1D, PBE possessessechsolution

u(x, t) = −
3
2

γ2−c2

α
sech2

(

x−ct
2

√

γ2−c2

β

)

(2)

wherec is the phase speed of the localized wave. This solution demonstrates that the
balance between the nonlinearity and dispersion can maintain the shape of the localized
wave, making the latter permanent. Forα > 0, the solitons are depressions. When one
considers PBE equation as a generic class, however, one can assume for convenience
thatα < 0 and have bell-like shapes for the solitons.

The most salient features of thesechsoliton (2) are that

1. it exists for subcritical phase speeds|c| < |γ|;
2. if c increases, the amplitude decreases;

3. This is due to the scale factor
√

(γ2−c2)/β , the shape of solution spreads for
increasedc.

In 2D, there is no analytical solution for the above Generalized Dispersive Wave
Equation (GDWE). Hence devising robust difference scheme is important.

BIFURCATION PROBLEM FOR THE 2D SHAPE

When investigating numerically the dynamics of solitary waves (see, [5]), the analytical
sechsolution (2) is taken as an initial condition. In 2D there is no analytical solution and
the first task to be surmounted is to find the shape of the stationary propagating soliton.
To this effect we consider the moving frameξ = x− c1t andη = y− c2t, wherec1,c2
are the components of the velocity of the center of soliton. For the shape function in the
moving framev(ξ ,η ), one gets the following stationary equation

0 = −(vξξ c2
1 +2c1c2vξη +c2

2vηη )+γ2(vξξ +vηη )+α [v2
ξξ +v2

ηη )

−β(vξξξξ +2vξξηη +vηηηη ). (3)

If localized solutions are sought, the following boundary conditions are imposed

v(−L1,η ) = v(L1,η ) = 0 = vx(−L1,η ) = vx(L1,η ) = 0,

v(ξ ,−L2) = v(ξ ,L2) = vy(ξ ,−L2) = vy(ξ ,L2) = 0, (4)

whereL1 andL2 are called “actual infinities” and they define the size[2L1×2L2] of the
rectangular region to which the infinite domain is reduced.

The localized solution exists alongside with the trivial solution and hence we are faced
with a bifurcation problem. Obtaining a numerical solution requires avoiding the trivial
solution. In the present work we propose to fix the value of the function in one point,
say in the middle point, namelyv(0,0) = θ and to introduce a new functionv= θu. The
equation for new functionu is the same as for functionv with the only differences that
the coefficient of the nonlinear term is nowαθ and that we have the additional constraint

u(0,0) = 1. (5)

86

Downloaded 22 Jun 2006 to 128.160.53.106. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



The condition (5) makes the problem overposed and in order to get a well posed problem
we need some flexibility. The latter comes through the fact thatθ is not known and
should be adapted so that the original equation is also satisfied at the pointξ = 0,η = 0.
Following this idea we use the original equation in the middle point as definitive equation
for θ, namely

θ =
∆(γ2u−β∆u)− (uξξ c2

1 +2c1c2uξη +c2
2uηη )

α∆u2

∣

∣

∣

∣

∣

ξ =0,η=0

. (6)

Eq.(3) written foru, together with (5) and (6) form a well posed problem. Because of
nonlinearity, this boundary-value problem has to be solved iteratively. One way to do this
is to add artifical time derivativeut in the governing equation and to start from arbitrary
non-zero initial condition and timestep the solution until convergence is reached in a
sense that two consecutive time steps do not differ significantly.

Without fear of confusion we will use once again the independent variablex,y in the
moving framein lieu of ξ ,η .

DIFFERENCE SCHEME

We consider rectangular regionL1 = L2 and specify the same number of grid intervals
N in both directions. The continuous functionu is replaced by the grid function

un
i j = u(ih, jh;nk), i = 0,1, . . . ,N, j = 0,1, . . . ,N,

whereh is the spacing in bothx- andy-directions andk = ∆t is time increment
We use an explicit difference scheme which is stable only whenτ ≤ 1

2h4. It makes
it inefficient for a bigger numerical investigation, but the purpose of this work is to
investigate the practical properties of the approximation and to prepare a solution that
can be used in further works as benchmark. Also, the main purpose is to find the actual
shape of the wave and to discuss its physical relevance.

The iterative finite difference scheme reads

un+1
i, j −un

i, j

k
= (γ2−c2

1)
un

i+1, j −2un
i, j +un

i−1, j

h2 +(γ2−c2
2)

un
i, j+1−2un

i, j +un
i, j−1

h2

−2c1c2
un

i+1, j+1−un
i+1, j−1−un

i−1, j+1 +un
i−1, j−1

4h2 +α
(

(un
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2−2(un
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2 +(un
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2

h2

+
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2−2(un
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2 +(un
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2
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i, j+1 +6un
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i, j−1 +un
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h4

)

. (7)

A difference version of the equation forθ is coupled to (7).
The grid b. c. areu0 j = u1 j = uN−1 j = uN j = 0, ui0 = ui1 = uiN−1 = uiN = 0.
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VALIDATION OF THE SCHEME

Since the iterations with respect to the artificial time are conducted until convergence, the
term approximating the time derivative disappears for large number of iterations. Then
the accuracy of the computations is affected by two main factors: magnitudes of spatial
incrementh and the cut-off valueL of the region (the “actual infinity”). Our numerical
experiments show that the difference of the calculated shapes for two different boxes
with L = 25 andL = 50, differ only by 0.003 which means that size 2L = 100 is fully
enough to provide ample space for the solution to decay properly for largex,y.

In order to assess the consistency of the scheme we have performed calculations for
the same value 2L = 100 on grids with differentN: 100, 200, and 400. Respectively,h is
1, 0.5, or 0.025. The norm of the difference between the solutions on different grids can
be defined ase(N) = maxi, j |ûi j − ũi j |, whereû andũ are the functions on the respective
grids. The truncation error of the scheme in our case ise(N) ≃ O(h2). For a secon-order
scheme, reducing the spacing twice should reduce the error four times. Indeed, we have
observed thate(100) = 0.035 ande(200) = 0.008 which are approximately in the ratio
4:1.

The absolute value of errore(200) = 0.008 gives the estimatee≃ 0.03h2. This ensures
one that the truncation error forN = 400 will be of order of 0.002 which is small enough
to claim that a grid with 400x400 points is reliable for the problems under consideration.
All results reported in what follows are obtained with grid 400×400 points.

RESULTS

In Fig. 1, the comparison of the shapes of a soliton at rest, and a soliton propagating
in x-direction with phase speedc2 = 0.6, is shown. The lower pannesl present the
lines of sonstant elevation/depression and the negative isolines are taken much denser,
because the depressions are much smaller than the elevations. In both cases there is slight
depression around the main hump which is the main difference between the 2D soliton
and thesechsoliton in the 1D case.

However, when the soliton is moving, the depression is deeper in front and behind the
soliton. A better quantitative description of this effect is presented in Fig. 2 where thex-
andy- cross sections are presented. The upper row of graphs show the function itself, the
lower row shows the absolute value of the function. The downward spikes in the lower
row are in the places where the function changes it sign.

Now it is seen that the depression is present even forc = 0, but in thex cross section
(right panels) the first change of sign is approximately in the same place, just the depth is
increasing withc. In they cross-section the passage through zero elevation takes much
farther from the center which means that the soliton is elongated iny-direction. Thus
the elongation of the soliton takes place in the transverse direction which is completely
non-intuitive if one is guided by the 1D results where the elongation takes place in
longitudinal direction.

In the end we present the cross section of the soliton shape. We chose the value 0.1
for the contour line to be compared, because the zero line spans much bigger domain
and is not convenient for presentation. The left panel in Fig. 3 presents the contour for
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FIGURE 1. The shapes of the 2D Boussinesq soliton. Left:c1 = 0.c2 = 0. Right:c1 = 0.6,c2 = 0.
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FIGURE 2. The comparison between thecross-sections of the soliton’s shape. Left:y= o. Right:x= 0.
Upper panels show the shape, the lower panels show the logarithm of the absolute value.

c1 = 0 and differentc2. The shape becomes elliptical in a similar fashion as in Lorentz
contraction. It is seen that the transverse scale is slightly contracted. The conclusion is
that the 2D Boussinesq quasi-particle undergo relative pseudo-Lorentz contraction in the
direction of motion.
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FIGURE 3. Left: Contour line 0.1 for motion iny-direction with phase speedsc = 0,0.6,0.9. Left:

Contour line 0.1 for differentc1 andc2, but for the same magnitudec =
√

c2
1 +c2

2 = 0.6 of the phase
speed.

The right panels of the Fig. 3 depicts the orientation of the elliptic cross section for
different combination of the components of the phase velocity, but when the amplitude

of the latter is kept constantc =
√

c2
1 +c2

2 = 0.6. It is seen that within the error of
approximation we have the same ellipse, with its major and minor axis aligned exactly
with the direction of the phase velocity.

CONCLUSION

In the present paper the shape of the 2D Boussinesq soliton is calculated numerically.
This is a result not known in the literature and shows two main physical differences in
comparison with the 1D case: there is pseudo-Lorentzian elongation in the transverse
direction, and there are depressions in front and in the rear of the soliton. This shows
that one has to proceed with caution when comparing the qualitative features of quasi-
particles in 2D to the well studied 1D cases.

The solution is obtained on high density grid 400×400 and can be used in future
works as initial condition for numerical experiments for collision of Boussinesq solitons.
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