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Abstract

A study of nonlinear acoustic waves in a homentropic perfect gas is presented. Conservation laws for the Euler and Lighthill–Westervelt
equations are constructed and solved numerically using a Godunov-type finite-difference scheme. Simulations are carried out in the context of
two initial-boundary-value problems (IBVP)s—one resulting in finite-time, and the other in infinite-time, blow-up at the wavefront. Additionally,
analytical results are presented to support the numerical findings.
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1. Introduction

The study of nonlinear acceleration waves, which is a branch
of singular surface theory, has been, and remains, an area of
considerable interest in continuum mechanics [1]. The fea-
ture that these waves are best known for, and that which dis-
tinguishes such propagating wavefronts from other nonlinear
waves such as solitons, is the phenomenon of finite-time blow-
up (or gradient catastrophe), whereby the wave’s amplitude
develops a singularity at a particular (finite) time. In 1967,
Coleman and Gurtin [2] conjectured that finite-time blow-up
implied that a shock wave had, in fact, formed. They noted,
however, that a rigorous proof of their supposition was lacking.
Over the years, many examples of this phenomenon have been
documented in the literature of continuum mechanics (see, e.g.,
Refs. [1–9] and those therein).
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The numerical study of shocks (especially in fluid dynamics)
has been a subject of considerable interest since the 1950s (see,
e.g., Chapter 5 of Ref. [10]). However, the hyperbolic equations
that govern such phenomena, e.g., the blow-up of acceleration
waves, are difficult to solve numerically. The numerical solu-
tions produced by standard finite-difference methods usually
lose monotonicity, due to the generation of spurious oscillations
in regions of large gradients (i.e., front steepening). As noted
by Jordan and Christov [7], a second-order accurate version of
their simple finite-difference scheme is not readily available.
In practice, one rarely finds suitable (i.e., monotone) standard
finite-difference schemes with a high order of accuracy. The
reason for this can be traced back to a theorem by Godunov,
which states that monotone schemes of order two (or higher) do
not exist for the linear advection equation (see, e.g., Ref. [10]
and those therein). Godunov’s work in the 1950s [11] prompted
the development of a wide array of shock-capturing numerical
algorithms. In particular, van Leer’s seminal series of papers
in the 1970s, culminating with [12], led to the development of
higher-order-accurate extensions of Godunov’s method. Books
such as Toro’s [10] and LeVeque’s [13] discuss a large number
of these advances. To date, the most successful shock-capturing

http://www.elsevier.com/locate/pla
mailto:pjordan@nrlssc.navy.mil
http://dx.doi.org/10.1016/j.physleta.2005.12.101


274 I. Christov et al. / Physics Letters A 353 (2006) 273–280
numerical methods are those developed for systems of hyper-
bolic conservation laws.

Our intent here is to carry out an in-depth, numerical study
of acceleration wave blow-up in homentropic perfect gases us-
ing a Godunov-type (i.e., shock-capturing and conservative)
numerical schemes. We consider both the Euler equations and
the Lighthill–Westervelt (LW) equation, the latter stemming
from imposing the finite-amplitude approximation in conjunc-
tion with the linear-impedance assumption on the former. We
compare and contrast the LW model with the Euler equations in
the context of two IBVPs that involve the input of a sinusoidal,
signal-type boundary condition. To this end, the present Letter
is arranged as follows. In Section 2, the exact Euler equations
for a perfect gas are reduced to a single equation for the acoustic
potential. In Section 3, an acceleration wave analysis of the 1D
Euler equations is presented, and the break-down time is deter-
mined. In Section 4, we derive the LW equation from the exact
1D potential equation, and we show that the former is equiva-
lent to a first-order system of nonlinear equations. In Section 5,
we discuss the Godunov-type finite-difference scheme that we
use for our simulations. In Section 6, we formulate both sys-
tems of equations (i.e., LW and Euler) as conservation laws
and present the numerical solutions to the two IBVPs. Lastly,
in Section 6 results are compared and in Section 7 conclusions
are stated.

2. Balance laws, equation of state, and basic assumptions

Consider a lossless, compressible fluid, which we assume
behaves as a perfect gas, that is initially in its equilibrium state.
The equations of continuity, momentum, energy, and state gov-
erning the homentropic flow of such a gas, referred to collec-
tively as the Euler equations, are

(1)�̇ + �∇ · v = 0,

(2)vt + 1

2
∇|v|2 − v × (∇ × v) = −�−1∇℘,

(3)η̇ = 0,

(4)℘ = ℘0(�/�0)
γ ,

where v is the velocity vector, � (> 0) is the mass density, ℘ is
the thermodynamic pressure, η is the specific entropy, the con-
stant γ (> 1) denotes the ratio of specific heats [14], all body
forces have been neglected, and a superposed dot denotes the
material derivative. Furthermore, Eq. (3) is a consequence of
the homentropic assumption2 η = const, where in the present
Letter this constant is the equilibrium value η0. And by equilib-
rium state we mean the unperturbed, quiescent state in which,
along with η = η0, � = �0, ℘ = ℘0, and v = 0, where �0 and
℘0 are positive constants.

Since the flow is assumed homentropic, it follows that
�−1∇℘ = ∇h, where h is the specific enthalpy [14]. Making
this substitution, and then taking the curl of Eq. (2), it can be
shown that ∇ × v = 0, for all t � 0, since the flow was initially

2 That is, η̇ = 0 and ∇η = 0; see [14].
irrotational [14]. Consequently, v = ∇φ, where φ is the scalar
velocity (or acoustic) potential, and Eq. (2) reduces to

(5)∇φt + 1

2
∇|∇φ|2 + ∇h = 0.

Next, we introduce the following thermodynamic relations, all
of which are easily established using the definition of h and the
perfect gas law [15]:

∇h = (γ − 1)−1∇c2, �t = 2�ct

{
c(γ − 1)

}−1
,

(6)∇� = c−2∇℘,

where c = √
γ℘/� denotes the sound speed in the disturbed

gas.
Using these relations, we recast Eqs. (1) and (5) as (see, e.g.,

[16])

(7)
{
∂t + (∇φ) · ∇}

c2 + (γ − 1)c2∇2φ = 0,

(8)c2 = c2
0 − (γ − 1)

{
φt + 1

2
|∇φ|2

}
,

where the constant c0 = √
γ℘0/�0 denotes the sound speed in

the undisturbed gas. Using Eq. (8), c2 can be eliminated from
Eq. (7) to yield, after some simplification,

c2
0∇2φ − φtt − ∂t |∇φ|2 − 1

2
(∇φ) · ∇|∇φ|2

(9)− (γ − 1)

{
φt + 1

2
|∇φ|2

}
∇2φ = 0.

This PDE, which has been derived in a number of works (see,
e.g., Refs. [16–18]), describes the homentropic flow of a perfect
gas in terms of the acoustic potential φ. In the one-dimensional
(1D) case, assuming propagation along the x-axis, Eq. (9) re-
duces to (see also [19])

c2
0φxx − φtt − 2φxφtx − (γ − 1)φtφxx

(10)− 1

2
(γ + 1)(φx)

2φxx = 0,

where v = (φx,0,0) = (u(x, t),0,0).

3. Acceleration wave analysis

Returning to the set of Euler equations but now limiting our
attention to 1D propagation along the x-axis, we can recast
Eqs. (1) and (2) as

�t + u�x + �ux = 0,

(11)�(ut + uux) = −℘��x,

where η̇ = 0 still holds, and from Eq. (4) we find that

(12)℘� = c2
0(�/�0)

γ−1.

Consider now a smooth planar surface x = Σ(t) propagating
to the right along the x-axis of a Cartesian coordinate system
into a region R filled with a perfect gas in its equilibrium state.
Suppose that u,� ∈ C(D1), where D1 = {(x, t): x ∈ R, t ∈
R

+}, and u,� ∈ C2(D2), where D2 = {(x, t): x ∈ (R \ Σ), t ∈
R

+}, but that at least one of the first derivatives of u or �, say
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ut , can suffer a jump discontinuity (or jump) on crossing Σ ;
i.e., [u] = [�] = 0 but [ut ] can be nonzero. Here, [F] denotes
the amplitude of a jump in the function F = F(x, t) across Σ

and is defined by

(13)[F] ≡ F− − F+,

where F∓ ≡ limx→Σ(t)∓ F(x, t) are assumed to exist and a ‘+’
superscript corresponds to the region into which Σ is advancing
while a ‘−’ superscript corresponds to the region behind Σ . If
[ut ] �= 0, then the surface Σ is termed an acceleration wave [1].
Hence, given the above, and assuming that the value of [ut ] is
known at t = 0, we set ourselves the task of determining the
behavior of [ut ] for all t > 0.

The first step in the process is employing Hadamard’s lemma
[1,2]:

(14)
D[F]
Dt

= [Ft ] + V [Fx],

where D/Dt is the (one-dimensional) displacement derivative3

and |V |(�= 0) is the speed of Σ with respect to the gas imme-
diately ahead. Then, invoking the assumptions [u] = [�] = 0,
along with Eq. (14), we obtain the jump relations

(15)V [ux] + [ut ] = 0, V [�x] + [�t ] = 0.

Next, we take the jumps of Eqs. (11), which is permissible since
they hold on both sides of Σ . This yields, after employing the
formula for the jump of a product,

(16)[FG] = F+[G] + G+[F] + [F][G],
the two additional jump equations

(17)[�t ] + �0[ux] = 0, �0[ut ] + c2
0[�x] = 0,

where we note that u+ = 0, �+ = �0, and ℘+
� = c2

0 since the
gas ahead of Σ is in its equilibrium state. Our next step is to
determine V . For this, we set the determinant of the coefficient
matrix of this system of (four) jump equations to zero. This
leads to the equation V 2 = c2

0(= ℘+
� ), and consequently the so-

lution V = c0, where the negative solution has been discarded
since we have taken Σ to be right-traveling. Additionally, we
note the following relations:

(18)

[ux] = −c−1
0 A, [�t ] = �0c

−1
0 A, [�x] = −�0c

−2
0 A,

where A(t) ≡ [ut ], which are derived directly from Eqs. (15)
and (17).

Although we omit the remaining details, it is a relatively
straightforward process using Hadamard’s lemma, Eqs. (11),
and the above jump relations, to derive the nonlinear, ordinary
differential equation

(19)
DA

Dt
−

(
γ + 1

2c0

)
A2 = 0.

3 That is, the time-rate-of-change measured by an observer traveling with Σ .
Eq. (19) is of the Bernoulli type; its exact solution, which has
been exhaustively studied, is

(20)A(t) = A(0)

1 − {c−1
0 A(0)(γ + 1)/2}t ,

where A(0) denotes the value of [ut ] at time t = 0.
According to Eq. (20), the evolution of A(t) can qualitatively

be described as follows:

(i) If A(0) < 0, then A(t) → 0 from below as t → ∞.
(ii) If A(0) = 0, then A(t) = 0 for all t � 0.
(iii) If A(0) > 0, then limt→t∞ A(t) = ∞, where the break-

down time is

(21)t∞ = 2c0

A(0)(γ + 1)
.

Finally, we observe that, in the case of a perfect gas, the
expressions for Σ ’s speed and amplitude given here based on
the Euler equations are identical to their LW counterparts given
in Ref. [7].

4. The Lighthill–Westervelt equation

In this section, we present a derivation of a simpler 1D equa-
tion for the acoustic potential by applying the finite-amplitude
approximation to Eq. (10). To this end, we begin by introducing
the following nondimensional variables:

φ′ = φ/(UL), x′ = x/L, t ′ = t (c0/L),

(22)u′ = u/U, �′ = �/�0,

where U (> 0) and L (> 0) denote a characteristic speed and
length, respectively, and we note that Eqs. (22)4 and (22)5 will
not be needed until end of this section. Consequently, Eq. (10)
is recast in dimensionless form as[
1 − ε(γ − 1)φt

]
φxx − 2εφxφtx − φtt

(23)= 1

2
ε2(γ + 1)(φx)

2φxx,

where ε ≡ U/c0 is the Mach number and all primes have
been omitted but are understood. Multiplying both sides by
[1 − ε(γ − 1)φt ]−1 and then expanding in a binomial series,
assuming that 0 < ε � 1 is sufficiently small, yields

φxx − 2ε
[
1 + ε(γ − 1)φt +O

(
ε2)]φxφtx

− [
1 + ε(γ − 1)φt +O

(
ε2)]φtt

(24)= 1

2
ε2(γ + 1)

[
1 + ε(γ − 1)φt +O

(
ε2)](φx)

2φxx.

If terms of order O(ε2) are now neglected, then, after simplify-
ing, we obtain

(25)φxx − φtt = ε

{
(φx)

2 + 1

2
(γ − 1)(φt )

2
}

t

,

which is the lossless version of Kuznetsov’s equation [15].
The final step in the derivation, which is not part of the

finite-amplitude approximation, is to assume propagation to the
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right and employ the linear-impedance relation φx ≈ −φt (see,
e.g., [18]) only on the right-hand (i.e., the perturbing) side of
Eq. (25). Making this replacement and rearranging terms, we
arrive at the (dimensionless) LW equation for a perfect gas,
namely,

(26)φxx − [
1 + ε(γ + 1)φt

]
φtt = 0.

As shown in [7], the (1D) LW equation can be expressed
as a first-order system. To rederive this system in terms of the
nondimensional quantities given in Eq. (22), we make use of the
fact that u ≡ φx and that the nondimensional acoustic density
ρ ≡ � − 1, which is also known as the condensation, is related
to the potential via ρ = −εφt . Hence, we have φt = ε−1(1 −�)

and, assuming that φxt = φtx holds, we also have ut = −ε−1�x .
Thus, it follows that Eq. (26) can be recast as the system

ut + ε−1�x = 0,

(27)�t + (1 + 2β − 2β�)−1εux = 0.

Here, we note that in the case of perfect gases, the ratio of spe-
cific heats γ is related to the coefficient of nonlinearity β via
β = (γ + 1)/2. Note that this system is not in the form of a
conservation law. In fact, neither is the system consisting of
Eqs. (1)–(4). Thus, the Godunov-type scheme, which we dis-
cuss in Section 5, cannot be applied to either of these systems
in their current forms. However, in Section 6 we show how the
latter issue can be resolved.

5. The MUSCL–Hancock scheme

In this section, we describe the high-resolution Godunov-
type conservative numerical method that we apply to the Euler
and LW equations derived in Sections 2 and 4. In particular,
we summarize our implementation of the MUSCL–Hancock
scheme (as described in [10]), which is a O[(�x)2 + (�t)2]
accurate method, in regions of smooth flow. The latter em-
ploys van Leer’s monotone upstream scheme for conservation
laws (MUSCL) to achieve second-order accuracy in space via a
nonlinear reconstruction of cell-interface values; second-order
accuracy in time is obtained through predictor-corrector time-
stepping.

Hence, let us consider the general hyperbolic conservation
law

(28)Qt + F(Q)x = 0,

where Q and F(Q) are column vectors containing the conserved
quantities and their corresponding fluxes, respectively. More-
over, for the case at hand, the conserved quantities are functions
of � and u. To this end, given domain [0, l], we construct a N -
cell staggered grid, such that the cells’ centers are located at
xi = (i + 1

2 )�x where �x = l/N and 0 � i � N − 1. More-
over, we use the average of Q over the ith cell at time t = tn
(i.e., at the nth time step), denoted by Qn

i , as the value of the
conserved quantities at the center of that cell. Consequently, the
value of Q at the left and right interface of the ith cell (again,
at time t = tn) is denoted by Qn

i− 1
2

and Qn

i+ 1
2
, respectively.

We approximate the conservation law in Eq. (28) via the con-
servative discretization

(29)Qn+1
i = Qn

i + �t

�x

(
Fn

i− 1
2
− Fn

i+ 1
2

)
,

where Fn

i− 1
2

and Fn

i+ 1
2

denote the fluxes through the left and

right interface of the ith cell, respectively. Note that Eq. (29) is
derived from the integral form of the conservation law, hence
it admits weak solutions to Eq. (28) and is shock-capturing
[10,13]. Below we discuss how to compute the fluxes at each
time step and obtain second-order accuracy in space and time.
And henceforth we take the temporal superscript n to be under-
stood.

The discretization given in Eq. (29) is only first-order accu-
rate is space and in time. To obtain second-order accuracy in
space we perform a slope-limited, linear reconstruction of the
cell-interface values of Q based upon the cell-center values. In
other words, we choose

QL
i = Qi − Φ

2
(Qi − Qi−1),

(30)QR
i = Qi + Φ

2
(Qi − Qi−1),

to be the values of Q at the ith cell’s left and right interface,
respectively. In the above equations, Φ represents for the “min-
mod” nonlinear limiter:

(31)Φ = max

[
0,min

(
1,

Qi+1 − Qi

Qi − Qi−1

)]
.

The nonlinear limiter is necessary for the scheme to be total
variation diminishing (TVD) and thus monotonicity preserving,
i.e., no spurious oscillations are introduced in the solution.

Upon extrapolating the cell-interface values of Q, we per-
form a predictor time step to obtain the evolved cell-interface
values:

(32)Q̄L,R
i = QL,R

i + 1

2

�t

�x

[
F
(
QL

i

) − F
(
QR

i

)]
.

Then, we set up a local Riemann problem (RP) on the right, or
upwind, interface of ith cell. That is to say, the RP is solved in
the local coordinate system with origin x̃ = 0, which is located
at the global cell-interface x = x

i+ 1
2
. Moreover, the initial data

for the RP is taken to be

(33)Q0 =
{

QL ≡ Q̄R
i , x̃ � 0,

QR ≡ Q̄L
i+1, x̃ > 0.

The solution to the above RP determines the flux through the
cell-interface.

In order to decrease the computational time and the com-
plexity of the algorithm, rather than computing the exact so-
lution to the RP at each interface, we obtain an approximate
solution to the RP via the method of Harten, Lax and van Leer
(HLL) [10,20]. Moreover, we never need to find the explicit so-
lution to the RP because, according to the HLL algorithm, the
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intercell flux F
i+ 1

2
can be approximated by

(34)FHLL =



FL, 0 � SL,
SRFL−SLFR+SLSR(QR−QL)

SR−SL
, SL < 0 < SR,

FR, SR � 0,

where FL,R ≡ F(QL,R). Furthermore, SL and SR (by assump-
tion, SL � SR) denote the speed of the fastest and slowest mov-
ing waves in the solution to the RP, respectively. But, since we
do not solve the Riemann problem explicitly, we approximate
the wave speeds by

(35)SL = −SR, SR = max
(|uL| + cL, |uR| + cR

)
,

where cL,R denote the local sound speed c on each side of
the interface. Also, we note that under the nondimensionaliza-
tion scheme given in Eq. (22), the (local) sound speeds in the
undisturbed and disturbed gas are one and c ≡ c/c0 = √

�γ−1,
respectively. We found the estimates given by Eq. (35) to be
robust and to provide good results for various wave states of
the RP (see, e.g., [10] for other choices). Furthermore, note that
computing the intercell flux via Eq. (34) from the evolved Rie-
mann data in Eq. (33) constitutes a corrector time step, resulting
in a scheme that is of second-order accuracy in time.

The stability of any explicit finite-difference method, such
as the one described above, is contingent upon the Courant–
Friedrichs–Levy (CFL) condition, i.e., the time step must be
such that

(36)�t � �x

Sn
max

⇔ �t = CCFL�x

Sn
max

,

where Sn
max denotes the speed of the fastest intercell wave at

time t = tn and CCFL the Courant number (0 < CCFL � 1). In
practice, the CCFL is determined empirically. In addition, we
obtain a reliable estimate of the largest intercell wave speed
from Eq. (35) (see, e.g., [10] for other choices):

(37)Sn
max = max

−1�i�N−1
SR.

The physical problems that we solve in Section 6 require
the use of both transmissive and reflective boundary conditions.
These boundary conditions are implemented via two ghost cells
on each end of grid. For the transmissive case we require that

�−1 = �0, u−1 = u0,

(38)�−2 = �1, u−2 = u1,

where the subscript denotes the cell’s index; an index i > N −1
or i < 0 corresponds to a ghost cell beyond the computational
grid. Likewise, for the reflective case we require that

�N = �N−1, uN = −uN−1,

(39)�N+1 = �N−2, uN+1 = −uN−2.

Note that we must use two, rather than one, ghost cells to be
able to perform a second-order-accurate reconstruction of the
cell-interface values at the boundaries of the grid.

It is known that the shock-resolution and stability of
Godunov-type schemes, which use the MUSCL reconstruc-
tion, depend on the choice of limiter. In addition to the minmod
limiter, we tested the “superbee” limiter and van Leer’s “MC”
limiter. We found that, for the IBVPs solved in Section 6, the
minmod limiter gives the best results. In order to validate the
scheme we conducted calculations with different grid sizes. Us-
ing N = 1000,2000,4000,8000,16 000, we found that (in the
regions of smooth flow) the difference between the solution on
each grid and the solution on the largest grid decreased quadrat-
ically, in the L1 norm. In the next section, we show the results
for N = 4000 and CCFL = 0.3.

6. Results and discussion

In order to apply the numerical method described in Sec-
tion 5 to the systems given in Sections 2 and 4, both must be
expressed as conservation laws. For the LW system [Eq. (27)],
we introduce the change of variable

�̃ = (1 + 2β)� − β�2 ⇔
(40)� = 1

2β

{
2β + 1 ∓

√
(2β + 1)2 − 4β�̃

}
.

Note that the “−” sign must be selected here so that � → 0
only when �̃ → 0. Consequently, by substituting Eq. (40) into
Eq. (27), we obtain the conservation law

(41)

(
�̃

u

)
t

+
(

εu

(2βε)−1{2β + 1 − √
(2β + 1)2 − 4β�̃ }

)
x

= 0.

The 1D Euler equations (11) can be expressed as a conser-
vation law by adding the second equation to the first and then
using Eq. (12), the equation of state, to eliminate ℘. This yields
a system that, in dimensionless form, is given by

(42)

(
�

�u

)
t

+
(

ε�u

ε�u2 + ε−1�γ /γ

)
x

= 0,

where ε ≡ U/c0 is the Mach number as before, and we continue
to omit the (understood) primes.

Consider now the two systems given by Eqs. (41) and (42)
subject to the following initial and boundary conditions:

ρ(x,0) = 0, u(x,0) = 0,

(43)ρ(0, t) = [
H(t) − H(t − tw)

]
f (t),

where H(·) denotes the Heaviside unit step function, we re-
call that ρ ≡ � − 1 denotes the dimensionless acoustic density,
and two forms of the periodic function f will be considered.
Note that the first two conditions reflect the fact that the medium
ahead of Σ is in its equilibrium state, and the third means that a
pulse of finite duration (or width) tw is introduced at the bound-
ary x = 0 at time t = 0+. For the simulations below, we use
tw = 1.

To compare and contrast the LW and Euler systems, as well
as evaluate the performance of our numerical method, we con-
sider two different input signals, or boundary conditions (BC)s,
f (t). In the first case, we take f (t) = ε sin(πt). As noted in [7],
with this BC the first derivative of f (t) suffers a jump across
t = 0. Moreover, such an (compressive) input signal will lead
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Fig. 1. Four snapshots in time of the scaled dimensionless acoustic density, ρ/ε, vs. x for f (t) = ε sin(πt).
to amplitude blow-up in finite time, strongly suggesting the for-
mation of a shock (see Section 3 and Ref. [7]). The second BC
considered is f (t) = ε sin2(πt), where both f (t) and its first
derivative f ′(t) are continuous across t = 0. Hence, there is no
acceleration wave at the wavefront, but the theory predicts an
infinite value of the breakdown time nevertheless (again, see
Section 3). However, we should note that the absence of an ac-
celeration wave does not preclude the steepening of the profile
behind the wavefront, i.e., for x < t .

In Figs. 1 and 2, the red and blue curves correspond to the
LW and Euler equations, respectively, and the dashed curves de-
note the (properly rescaled) linear solution. In Fig. 1, the solid
black lines were generated from Eq. (20) and denote the tangent
line to the profile at the wavefront Σ as predicted by singular-
surface theory. We performed simulations for several values of
the Mach number. As expected, the LW system was found to
be in close agreement with the Euler equations only for smaller
values of ε.

From Fig. 1 it is clear that even for a Mach number as
large as ε = 0.265 (given that ε � 1 by the finite-amplitude as-
sumption), the LW system is in good agreement with the Euler
equations, at least for small values of t . Moreover, the slope
at the wavefront, as numerically determined, was found to be
in excellent agreement with the predictions of singular surface
theory. In addition, the conservative LW formulation presented
here yields a profile that is, in essence, indistinguishable from
the one generated in [7], which is represented by the black dots
in Fig. 1 for t = 0.95.

As Fig. 1 clearly shows, the LW system predicts a faster rate
of steepening of the profile than the Euler equations. This is
an important finding that we attribute to what can be loosely
called “saturation of the nonlinearity.” In other words, under
the finite amplitude approximation, the nonlinear terms are not
bounded, while under the framework of the exact theory (Euler
equations), the nonlinearity is a bounded function of the de-
pendent variable u. Thus, for larger u the LW profile exhibits
a much faster steepening than the corresponding Euler profile,
since the former is subject to saturation of the nonlinear term.

Fig. 2 presents the numerical solution for the second choice
of BC, for which finite-time blow-up does not occur at the
wavefront. The conventions for the curves are the same as in
Fig. 1. Here, two different Mach numbers are considered. The
first, ε = 0.1 (shown in the left panel of frames in Fig. 2), is
small enough so that the predictions of the two models are ex-
pected to be very close; and indeed they are up to t = 2.00,
which is a relatively large time. Moreover, it is clear that there is
no shock at the wavefront; however, the profile steepens contin-
uously in the region behind Σ . Once again, the profile governed
by the LW system tends to steepen faster than the profile gov-
erned by the Euler system. For t = 1.00 and ε = 0.265, it ap-
pears that the LW profile has already developed a shock behind
the wavefront. Similarly, the Euler profile appears to develop a
shock, but at a later time. Also, note that in both cases, there
is no shock in the vicinity of the wavefront. Lastly, it should
be noted that the simple, explicit finite-difference scheme given
in [7] was found to be ill-suited for this (second) choice of BC.

7. Conclusions

We have examined the propagation of acoustic signals pro-
duced by two different sinusoidal BCs, as modeled by the Euler
system of equations and by the LW equation, the latter being
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Fig. 2. Three snapshots in time of the scaled dimensionless acoustic density, ρ/ε, vs. x for f (t) = ε sin2(πt) and two different values of ε.
a weakly nonlinear approximation of the former in which the
linear-impedance assumption is also used. Specifically, we em-
ployed a Godunov-type shock-capturing scheme to compute the
numerical solutions of the former and latter for relatively large
times. Additionally, we reformulated the LW equation as a con-
servation law using a new set of dependent variables and, to
support our numerical work, we also presented an acceleration
wave analysis of the Euler equations.

For the compressive BC (see Fig. 1), our numerical scheme
did a very good job of capturing the “shocking-up” of the pro-
files as the time of blow-up approached. In fact, the numerically
predicted time of blow-up was in excellent agreement with that
of the theory (see Section 3) for both systems. Of particular
interest was the finding that the rate of steepening predicted
by the LW system is much greater than that predicted by the
Euler equations. In contrast, for the second BC considered (see
Fig. 2), the theory predicts that there is no acceleration wave,
and that the breakdown time is infinite. However, our simu-
lations suggest that the profile develops a discontinuity in the
region behind the wavefront (i.e., x < t) in finite time. Nonethe-
less, this does not contradict our theoretical prediction of an
infinite breakdown time for this case, since the results of Sec-
tion 3 apply strictly at the wavefront. (Because the steepening
of the profile behind the wavefront is clearly different from that
which contributes to acceleration wave blow-up in finite time,
and thus is atypical of what can be found in the literature, we
feel that the former warrants further study.) Lastly, an impor-
tant finding of our simulations for this (second) BC is that, just
as it did for the first BC, the LW equation predicts much steeper
profiles and a more rapid rate of shocking-up than do the Euler
equations, limiting its applicability to small values of t and ε.
We explained the faster rate of steepening as a saturation ef-
fect.
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