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1 Introduction 
Biharmonic boundary value problems arise in many 
different areas of mechanics of continua. The best known 
are the stream function formulation for stationary Navier-
Stokes equations for flows of viscous liquids and equations 
for deformation of elastic plates. Constructing efficient 
numerical algorithms is of prime importance in these cases. 
A well established approach to the problem is to introduce 
an artificial time in the elliptic equation and to use operator 
splitting technique for the resulting parabolic equation. The 
technique is summarily known as Alternative Directions 
Implicit (ADI) method. To the authors’ knowledge, the first 
work in which an ADI scheme was applied to biharmonic 
equation is Conte and Dames (1960) where the so-called 
second Douglas scheme (1955) for Laplace operator is 
reformulated for the biharmonic case. The scheme of Conte 
and Dames (CD) exhibits the best of the world of ADI 
schemes, as being absolutely stable and low cost per 
iteration, but its rate of convergence has been shown to be 
rather slow in some cases (see, Greenspan and Schultz, 
1972; Ehrlich and Gupta, 1975). In order to accelerate the 
convergence, we consider an iteration unit consisting of a 

CD scheme and a modified scheme, the latter dependent 
upon a parameter. The two schemes damp different parts of 
the spectrum differently and in the present we show paper 
that the combination of them yields a faster convergence 
than the original ingredients. This idea is generalised in the 
second part of this paper. Two consecutive iteration units 
are treated as one operator, which has all necessary 
properties for us to arrange another iteration unit consisted 
of four previous iteration units. Eventually, we show that 
more significant acceleration can be obtained by this 
generalised multiunit scheme in the cases when CD scheme 
has extremely slow convergence.  

2 Conte–Dames ADI Scheme 

One of the ways to construct an iterative scheme for the 
biharmonic equation is to consider the following two-
dimensional higher-order parabolic equation for the 
Dirichlet boundary value problem  
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where D is a square region {( ) 0 1 0 1}x y x y  and 
D D D  is its closure. 2 is the biharmonic operator  
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In order to obtain second order of approximation of the 
difference scheme, we assume that function u possesses 
derivatives up to sixth order.  

For the purpose of the present work, we employ an 
uniformly spaced mesh in D  with spacings 
hx = hy = h = 1/N, where N is the grid size. Then, we  
replace D and D by sets of grid points Dh and Dh where 

{( ) 1 2 1 1 2 1}hD ih jh i N j N  is the set 

of interior grid points. Respectively, n
i ju  is the difference 

approximation to u at the grid point x = ih, y = jh and  
time stage t = n , where  is the time increment. To 
obtain a second-order approximation, the usual central 
difference operators 4

x , 4
y  and 2 2

x y  are implemented, 

namely,  
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Now, if an explicit scheme is used for solving the boundary 
value problem Equation (1), then the stability condition 
limits the time step at 41

2 h  which makes it practically 
unusable. In the case under consideration, it is even more 
important to construct unconditionally stable implicit 
scheme, than it is for the case of a second-order in space 
parabolic equation. The most viable approach in this 
situation is to generalise to the case one of the operator 
splitting scheme, such as the Douglas scheme. It was done 
first by Conte and Dames (1960) and we call their scheme 
in what follows ‘CD’. Just as the Douglas scheme (1955) 
does, the CD scheme consists of two sweeps in x- and y-
directions over the interior grid points Dh and they are given 
by 

4 2 2 4( 2 )n n n
i j i j x x y i j y i j i ju u u u Fu  (5) 

1 4 1 4( )n n n
i ji j y i j y i ju u uu  (6) 

where 0 0i ju  is an (arbitrary) initial condition and the time 
increment  plays the role of an iteration parameter and 
can be chosen to accelerate convergence.  

A note is in order here about the difference between the 
CD scheme and the Douglas scheme for second order 
equations. Due to the presence of the mixed fourth derivative 
in Equation (1), the CD scheme will always contain an 
explicit element because the operator of the mixed derivative 
cannot be effectively split. Yet, as shown in Conte and Dames 
(1960), the scheme is still unconditionally stable regardless of 
the explicit element present in it. In a sense, the reduction in 
the norm provided by the inversion of the fourth order 
operators is so large that it overcomes the possible increase 
due to the explicit operators. This is a good news or the 
generalisation of the scheme for anisotropic case, when the 
fourth order operators contain coefficients that are functions 
of the spatial variables. In such a case, more mixed derivative 
will appear in the right hand side of Equation (1). The recipe 
is to keep the additional mixed derivative on the old time 
stage. 

All this makes the operator-splitting scheme an 
important tool for solving biharmonic problems and warants 
a further work on speeding up its convergence. To this task 
is devoted the present paper.  

Now, the second-order approximations for the boundary 
conditions read  
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for i = 1, 2, N –1 and j = 1, 2, N –1. The boundary 
conditions for the “half-time-step” variable  can be 
obtained from the approximations for the boundary 
condition (7) by reversing the second half-time step at the 
boundary (see Yanenko, 1971; Strikwerda, 1989)  

1 4 1( )n n n
yu u u u  (8) 

Since we are solving a stationary problem, the boundary 
settings for un are invariant in the iterative process, that it is,  
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for j = 1, 2, N –1; which are substituted in Equation (8) to 
derive the x-direction of Equation (7).  

If the intermediate variable i,j is eliminated between the 
Equations (5) and (6) become  
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where F stands for the grid function of F(x, y) on Dh, E
denotes the identity matrix and the difference operators are 
considered as the corresponding matrices for grid function 
un. The subscripts i, j are omitted for brevity of notation. 
The transition matrix T from one time step to another is  

4 4 2 4 4 1 2 2 2 4 4( ) ( 2 )x y x y x y x yT E E  (11) 

The convergence of CD scheme for arbitrary positive 
iteration parameter  is shown in Conte and Dames (1960) 
by demonstrating that 1T  for any  > 0 for the case 
when the second-order difference approximations for the 
Dirichlet boundary conditions are implemented. 
However,the dependence of spectral radius of T on the 
iteration parameter  has not been investigated so far, 
because of the difficulty in obtaining appropriate 
eigenvectors of the difference operator for biharmonic 
problem with Dirichlet boundary conditions. If an arbitrary 
is chosen, the convergence rate of CD scheme can be quite 
slow (see discussions in Greenspan and Schultz, 1972; 
Ehrlich and Gupta, 1975).  

Therefore we have three essential objectives to achieve 
in this work: 

1 to reformulate the CD scheme in a manner that allows 
one to accelerate its convergence rate depending upon 
an iteration parameter; 

2 to prove that acceleration is possible and to find an 
estimate for the iteration parameter introduced; 

3 to find the optimal choice of the iteration parameter 
through numerical experiment.  

Suppose that w is the grid function that is the solution of the 
stationary difference problem with Dirichlet boundary 
conditions, namely,  
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for i = 1, 2, N –1 and j = 1, 2, N –1; where 2
h

denotes the matrix for 13-point stencil approximation of the 
biharmonic operator.  

Define the error vector n  for the n-th iteration as  

n nu w  (16) 

By Equation (10) and boundary condition (7), we obtain the 
system of equations with homogeneous boundary conditions 
for n

1 onn n
hT D  (17) 

1 0 onn
hD  (18) 

1 1 1 1
1 1 1 1

n n n n
j j N j N j  (19) 

1 1 1 1
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n n n n
i i i N i N  (20) 

Using Courant’s theorem, Bodewig (1956) and Conte and 
Dames (1960) showed that for the boundary  
conditions (18)–(20) the transition matrix T has a complete 
set of eigenvectors vk for the vector space  defined  
on Dh and the corresponding eigenvalues are 

1 2 10 ( ) ( ) 1m mT T . This is the 
only a priori information about transition matrix T we need 
in order to be able to improve the original CD method. For 
convenience, we denote the matrices involved in the scheme 
as  

4
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Then T can be written as 1 1
y xT B B R .

3 The modified splitting scheme 
In order to accelerate the convergence of the iterations for a 
given time increment , we try to find a modification of the 
CD scheme in which the transition operator has smaller 
norm than the original scheme.  

The gist of present paper is that we introduce an 
iteration unit consisting of two CD iterations with different 
arrangements of the explicit terms by means of an auxiliary 
parameter  as follows for the (n + 1)th unit  

2 1 2

2 2 2 1 2

(a)

[( 1) ] (b)

n n
x y

n n n
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B B u Ru F

B B u R u u F
 (21) 

where the intermediate variable  is eliminated and 
2 1 2( 1) n nu u  is considered as the input vector to 

compute u2n+2 using CD scheme in (b). The boundary 
conditions are the same for the two steps and are omitted for 
the sake of brevity. Clearly, there is no extra cost for 
implementing the new scheme.  

To study the convergence of the iteration units we 
observe that by definition, Equation (16), and some standard 
algebraic manipulations, one can recast the equations of the 
full iteration unit, Equation (21), as equations for the error 

n, namely,  
2 1 2 2 2 2 1 2(( 1) )n n n n nT T  (22) 

and hence  
2 2 2 2(( 1) )n nT T  (23) 

The iteration units are convergent for 0 2 2 2 .
Begin with a trivial initial condition u0 = 0, which means 



298 X-H. Tang and C.I. Christov

that the initial condition for the error is 0 = –w. The Fourier 
expansion of  with respect to the complete set of 
eigenvectors {vk} of T reads  

0

1

m

k k
k

w c v  (24) 

where Ck is the corresponding Fourier coefficient. Then by 
Equations (22) and (23), we represent  n as  

1

1

( ) if 2 1

( ) if 2

m l
k k k kkn

m l
k k kk

c v n l

c v n l
 (25) 

for l = 0, 1, 2, ; where we define the quadratic function 
2( ) (1 ) andk k k k  is the corresponding 

eigenvalue for T. In order to show the convergence of the 
iteration units, it is sufficient for us to show that for each 

, | ( ) | 1k k , since 0 1k . Indeed, we have 

0 1

2( 1)

max ( ) max | ( ) |

max | (0) |,| (1) |, ,

k k x x
 (26) 

where we consider only  > 0 because only positive choice 
of  can accelerate the iterations. Since (0) 0  and 

(1) 1,  Equation (26) will hold when  

2
1

2( 1) 4( 1)
 (27) 

whence it follows that 0 2 2 2  must hold in order 
to ensure that we have max ( ) 1

k k  which is needed 

for the convergence of the iteration unit Equation (21).  
Now, we analyse the acceleration of the convergence for 

the iteration units. Consider the error cd
n  for the CD 

scheme after n iterations. Using Equations (17) and (24), we 
can represent cd

n  in terms of Fourier expansion with respect 
to the eigenvectors vk of the transition matrix T, namely,  

cd
1

( )
m

n n
k k k

k

c v  (28) 

The coefficients of vk in the error vector cd
n  decrease in 

absolute value by the multiplicative factor of k. The least 
affected is the coefficient of vm, which corresponds to the 
largest eigenvalue m. Repeating CD iterations leads us to 
the asymptotic case, because for n >> 1 all other  
coefficients become negligibly small compared to the 
coefficient of vm, and hence we have the error for CD 
scheme given by  

1 1( )n n n
cd m cd T  (29) 

From Equation (29) follows for the standard norm 
2

cd cd cd( )n n n  that  

1
cd cd( )n nT  (30) 

Although for small n the amplifier of the norm depends 
upon the iteration, the performance of the iterative process 
is usually judged by the asymptotic rate of convergence s
( 1n ) which is defined as  

cd

1
cd

ln ( ) ln
n

n
s T  (31) 

By the recursive relation, Equation (30), we obtain the 
asymptotic equation  

ln ( ) 0 0
cd cd cde en n T ns  (32) 

In this way, the asymptotic rate of convergence s
characterises the rate of the exponential error decrease. The 
cause of slow convergence of CD scheme is that (T) is 
close to unity. In such a case, we use the notation  = 1 – p
where 0 1p . Using the Taylor expansion, the 
asymptotic rate of convergence s of CD scheme is given by  

ln(1 ) 1s p p  (33) 

In the same manner, we investigate the asymptotic rate of 
convergence s of our iteration units. In order not to obscure 
the main idea, we limit the discussion here to some typical 
values of , as  = 3, which is in the range 0 2 2 2 .
The coefficient of eigenvector vk in Equation (25) decreases 
in absolute value by the multiplicative factor of 3 ( )k .

Since, 2
3 ( ) 4 3x x x  is a quadratic function, it is easy to 

show that its minimum is at 3 8x  and has the magnitude 
of – 9 16 . Then  

3 3
0 1

9max ( ) max (1 )
16k

k
p

p  (34) 

which means that if 39 16 (1 )p , we have already 
obtained a very fast convergence of the iteration units which 
will reduce the error to 10–5 within 20 iteration units.  

On the other hand, for 1p  we have 

3 (1 ) (1 )(1 4 ) (1 5 ) 9 16p p p p  and using 
Equation (23) asymptotically for 1n , we can write  

2 2 2(1 5 )n np  (35) 

Therefore, the corresponding asymptotic rate of 
convergence of our iteration units is  

1 ln(1 5 ) 2 5
2

s p p  (36) 

where we compare one iteration unit consisted of two 
iterations with two original CD iterations for which the 
reduction factor would be 2(1 ) 1 2p p . All this means 
that the introduction of the iteration unit can speed up the 
convergence rate at least 2.5 times. Note that the actual 
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factor of acceleration depends upon the value of time 
increment  and is discussed in Section 4. Similarly, we can 
verify that for 0 2 2 , the asymptotic rate of 
convergence is  

1 ln (1 )
2
1 ln{(1 )[( 1)(1 ) ]}
2

1 ( 2)
2

s p

p p

p

 (37) 

But, this conclusion depends upon the assumption that 
1 ( ) 1T p  and  

2
(1 )

2(1 ) 4(1 )
p  (38) 

Actually, the maximum eigenvalue (T) of the transition 
matrix can be estimated in the numerical experiment, based 
on which we can choose a proper value of the auxiliary 
parameter  to maximise the acceleration of the devised 
iteration units. By Equations (10) and (11), we have the 
recursive relation  

1 1( ) ( )n n n nu u T u u  (39) 

Since ( ) 1T T , after a few CD iterations the largest 
eigenvalue (T) becomes the dominant multiplicative factor 
in the iterations while other smaller eigenvalues become 
negligible. Therefore, we can compute the numerical quantity  

1

1

n n

n n

u u
q

u u
 (40) 

in each CD iteration and when q varies little between two 
consecutive CD iterations, an estimate of (T) is obtained. 
Based on the the a posteriori numerical estimate q (T),
we can determine the optimal choice of  to maximise the 
acceleration. At first, we notice that (q) is a linear function 
of  when q is fixed  

2 2
1( ) ( ) ( )h q q q q  (41) 

since q2 – q < 0, h1( ) is a monotone decreasing function. 
Next, we consider another function h2 of 

2

2 ( )
2(1 ) 4(1 )

h  (42) 

which is a monotone increasing function on the interval 
(0 2 2) , since for (0 2 2)  we have  

2

2
2( ) 0.

4( 1)
h  (43) 

To maximise the acceleration, by Equation (26) we need to 
find  from  

1 2
0 2 2

min {max[ ( ) ( )]}h h  (44) 

By the monotonicity of h1( ) and h2( ), it is easy to verify 
that the optimal  must be the positive solution of the 
following equation and automatically (0 2 2 2) ,

2
2 2( )

4(1 )
q q q  (45) 

Therefore, we obtain the optimal  by solving (45)  

2

opt 2 1
2

2 ( 2 1)( )
2 2

q q
q

q q
 (46) 

Since h1( ) = q2 and h1( ) is a decreasing function, then we 
have  

2
opt 2

1 opt
opt

0 ( )
4(1 )

h q  (47) 

where q2 stands for the convergent effect of two CD 
iterations. Hence, we have shown that for different choices 
of the iteration parameter  in the CD method, which give us 
different transition matrices T (i.e. different q), we are 
always able to select a opt to accelerate the CD scheme.  

By Equations (37) and (46), we can see that when (T)
is closer to unity, that is to say, the original CD method has 
a slower convergence, larger auxiliary parameter  can be 
chosen in the iteration units which leads us to a more 
significant acceleration over the CD method. Since the 
value of  is bounded by 2 2 2 4 8 , by Equation (37) 
the best acceleration that our method can reach is 3.4 times 
faster than CD method.  

In implementation of the algorithm, we follow Christov 
and Ridha (1994) where a splitting scheme of type of CD 
was applied to lid-driven cavity flow of viscous liquid. Later 
on a similar algorithm was used in Christov and Pontes 
(2002) for another kind of higher-order diffusion equation.  

4 Results for the 2-unit scheme 
We begin with numerical verification of the performance of 
a unit consisting of two iterations as introduced above. We 
call it ‘2-unit iteration’. It is possible to construct 
8- and 32-unit iterations with increased rate of convergence, 
which will be discussed in a later section.  

In constructing the test cases, we first selected a possible 
solution of the non-homogeneous biharmonic equation 
which satisfies the boundary conditions. Then, we 
introduced the solution-to-be in the biharmonic equation 
and found what was the non-homogeneous term that had 
produced the chosen solution. The first test case is given by  

2 2ˆ( ) sin ( )sinhu x y x y  (48) 

2 2 2 2

4 2

( ) 8(sinh cosh )[ cos(2 ) sin ( )]

8 cos(2 )sinh

f x y y y x x

x y
 (49) 
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where û is the solution, and f is the right hand side of the 
biharmonic equation. As a second test case, we use the 
analytical solution form Arad, Yakhot and BenDor (1996), 
namely,  

4 2 4 2ˆ( ) 2350 ( 1) ( 1)u x y x x y y  (50) 

2 2 4

2 2 2 2

2 4 2

( ) 56,400(1 10 15 )(1 )

18,800 (6 20 15 ) (6 20 15 )

56, 400(1 ) (1 10 15 )

f x y x x y y

x x x y y y

x x y y

 (51) 

The operator to be inverted is the same in both cases and 
does not depend upon the actual solution, and hence on the 
right hand side. Yet, the convergence rate does depend upon 
the specific solution because of the fact that different 
eigenfunctions decay differently with the iterations. Since 
different analytical solution have different content of 
eigenfunctions, the convergence rate can vary significantly 
from case to case. This is the rationale to check the 
performance for two radically different analytical solutions.  

First of all, we demonstrate the second order 
approximation of the scheme. It is relevant to do that, 
because one needs to be assured that an iteration unit does 
give the same truncation error as a single CD iteration. For 
this particular test, we fix  = 1,2 and 1

4 h  and calculate 
the solution with three different grids. Here, we fix the value 
of  and vary the number of grid points both along x and y
directions simultaneously. We define the computed order of 
approximation as  

2
2

ˆ
log

ˆ
N

N

u u
R

u u
 (52). 

For schemes whose theoretical truncation error is 
proportional to h2 the value of R = 2. Table 1 shows the 
results for R, as calculated from the obtained numerical 
solutions for the two test cases. It is seen that in both cases, 
the computed convergence rate is very close to two. 
Therefore, our method is indeed second-order accurate for 
biharmonic equation.  

Table 1 L  norms of the difference between numerical and 
analytical solutions and computed order of 
approximation R for different grids 

N  = 1 R  = 2 R
case Equation (48) 
256  1.578 10–5 – 1.582 10–5 –
512  3.797 10–6 2.05 3.810 10–6 2.05 
1024  9.687 10–7 1.97 9.747 10–7 1.967
case Equation (50) 
256  3.093 10–4 – 3.080 10–4 –
512  7.981 10–5 1.95 8.063 10–5 1.93 
1024  1.823 10–5 2.13 1.884 10–5 2.09 

Having confirmed the second-order accuracy of the scheme, 
we can address the issue of computational efficiency. The 
pertinent parameter here is the number of iterations, say 

Niter, needed to reduce the norm of the difference between 
two iterations to 10–6.

Clearly, the rate of convergence is a function of the time 
increment, , and the optimisation parameter . For different 
values of , we have performed calculations with several 
different . In Figure 1, we present the number of iterations 
Niter needed for the norm between two iterations to go down 
to 10–6 for the solution Equation (50). Note that  = 0 
corresponds to the original CD scheme.  

Figure 1 Number of iterations, as function of  for different 
Values of   and grid size 1024  1024

 20

 40

 60

 80

 100

 120

 140
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 180

 200

 220

 5e-05  0.0001  0.0002  0.0003  0.0005  0.001  0.002

θ=0
θ=1
θ=2
θ=3
θ=4

For  2 there is a well pronounced minimum of the 
number of iterations for original CD scheme, as well as the 
scheme with one iteration unit developed here. In this range 
of , our number of iterations is consistently smaller than 
CD scheme, the least ratio being two, i.e. our scheme is at 
least twice as fast as CD scheme. In the range of non-
optimal , it overperforms CD scheme with an even larger 
ratio. The result in Figure 1 is in a very good agreement 
with the theoretical estimate Equation (46) which gives us 

optimal  1.8 when the a posteriori estimate for q is 
approximately 0.77, which is the fastest one can get for a 
splitting scheme of the type of CD by choosing iteration 
parameter  = h/4.  

It is interesting to mention here the non-monotone 
behaviour of Niter with the increase of , which means that 
there is an optimum for , but only in the vicinity of optimal 
. When  cannot be a priori chosen to be the optimal one, 

then the scheme proposed here will be better than CD 
scheme even for a wider range of .

It is to be mentioned here that we have a similar result 
for grid size 512  512, for which the values of Niter
consistently lower by 10% from the presented case. This is 
completely natural for iterative algorithms because the 
eigenvalues of the difference operators depend upon h.

5 More complex iteration units 
In Section 4, we discussed the acceleration of the 2-unit 
iteration in detail and showed that the acceleration can be  
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achieved only in the specified range for . Since, we are 
dealing with fourth order derivatives in a biharmonic 
equationwith Dirichlet boundary conditions, the matrix to be 
inverted has a very large condition number (see Ehrlich and 
Gupta, 1975). Therefore, for some particular solution, with 
specific content of eigenfunctions, CD scheme exhibits very 
slow convergence of the iterations due to the fact that T  is 
very close to unity. In such cases, even our 2-unit scheme 
does not provide the desired acceleration. Hence, for the 
case 1p  (say, p  0.01, which means 1 0 99),T p

we need to come up with an idea for a further acceleration. 
In this section, we show how to apply the same idea of 
acceleration, but with the 2-unit scheme playing the role of 
a single element. Thus, we generate a larger iteration unit, 
whose acceleration over the 2-unit scheme (and as a result 
over the CD scheme) is significant.  

For convenience, we denote the iteration unit, 
Equation (21), using the auxiliary parameter  as  

(0)2 2 2n nu K u  (53) 

then for the error vector, n, we get by Equation (23) the 
following  

(0)2 2 2n nL  (54) 

where (0) 2( 1)L T T . As shown in Section 4, the 
convergence and acceleration of the iteration unit stem from 
the fact that the eigenvalues of T are in the interval (0,1). 
Yet, now the eigenvalues of full transition operator for the 
2-unit scheme, (0)L , can be negative, since  

0 2( ) ( 1) ( )k k k kL  (55) 

Therefore, we cannot construct new iteration units when 
using the operator (0)L in lieu of T. Instead, we can consider 
a block of two consecutive iteration units of type of 
Equation (53), as a basic iteration element which computes 
four full time steps  

(0)4 2 4
(1)4 4 4

(0)4 4 4 2

n n
n n

n n

u K u
u K u

u K u
 (56) 

and the corresponding transition matrix between the error 
vectors 4n and 4n+4 is 

(1) (0) 2[ ]L L  (57) 

Since ( ) 1k  for 0 2 2 2 , we get  

(1) 20 ( ) ( ) 1,k kL

Hence, we can construct a new accelerated iteration unit 
containing two units Equation (56) in the same manner as in 
Section 4, namely, 

(1)8 4 8

(1)8 8 8 4 8
1 1[( 1) ],

n n

n n n

u K u

u K u u
 (58) 

where the auxiliary parameter 1 can be chosen 
independently from . We can denote the full unit as 

1

(2)8 8 8 .n nu K u  (59) 

So, we obtain an iteration unit 
1

(2)K containing eight CD 

iterations, and the corresponding transition matrix between 
the error vectors 8n and 8n+8 is written as 

1

(2) (1) (1)2
1 1( 1)[ ] .L L L  (60) 

For the sake of convenience we call Equation (60) the  
‘8-unit scheme’. Its convergence and acceleration are 
ensured automatically by choosing 10 2 2 2 , but 
the rate of convergence varies with µ and p. We can derive 
an estimate for the asymptotic acceleration rate of the 8-unit 
scheme in a similar manner as in Equation (37) by 
observing that the acceleration rate of the 2-unit scheme 
itself figures into the 8-unit scheme cumulatively. We focus 
on the asymptotic case 1p , when CD scheme is very 
slow. If p is larger, then the 2-unit scheme does not require 
too much acceleration and this case is beyond the scope of 
this section. Thus, the relevant case here is 1p  which is 
reflected in the numerical example chosen in Section 6. For 
very small p, the acceleration of the 8-unit scheme over the 
CD scheme is given by 

1
1 ( 2)( 2) .
4

s p  (61) 

This estimate holds only under a similar constraint as 
Equation (38) for the 2-unit scheme, namely, 

1 1

1

1
[ (1 )].

2(1 )
p  (62) 

Note that, if one should encounter even slower convergence, 
a 32-unit scheme can be developed based on the 8-unit 
scheme such that the further acceleration can be obtained. 

6 Results for 8-unit scheme 
In this section, we treat a case with very slow convergence 
with analytical solution given in Ehrlich and Gupta (1975),  

2 2ˆ( ) e cosxu x y x y x y  (63) 

( ) 0f x y  (64) 

For this test solution, it takes approximately 3832 CD 
iterations to reach an error 1.6  10–6 and we determine a
posteriori that 1 0 997q p T . To assess the 
acceleration of the 8-unit scheme we choose  = 4 and 

1 = 4. Since  

4 4

4 4

4 (0 4) 0 8
2(1 4)

( (1 0 003)) 0 8939

 (65) 
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the constraint Equation (62) is satisfied. Respectively, the 
acceleration rate of our 8-unit scheme can be estimated on 
the base of Equation (61) as about nine times faster than CD 
scheme.  

Turning to the implementation, one needs to establish a 
criterion to terminate the iterations. There are different ways 
to terminate the iterations. The standard way is to stop after 
the difference between two consecutive iterations becomes 
smaller than certain number. This not the best way to 
compare the efficiency of different schemes, because the 
speed of convergence may be different for different schemes 
and after the termination of the iterations the obtained 
solution differs from the analytical by different amount, etc. 
in order to be consistent with the adopted practice, we begin 
with the assessment of the schemes when the termination 
criterion is  

1n nu u  (66) 

In the left panel of Figure 2, we show the number of 
iterations needed to satisfy Equation (66) for  = 10–6. Note 
that the solid line,  = 0, corresponds to the CD scheme. We 
can see that our scheme overperforms CD for this criterion, 
except for  = 4 and  1 = 4. A similar comparison is 
presented in the left panel of Figure 3, but for  = 10–7

Figures 2 and 3 show that increasing the requirement for 
the norm, makes our scheme much more efficient than CD. 
This means that if one requires better precision, the 
proposed here scheme becomes radically better than CD.  

Although the criterion Equation (66) is the most widely 
accepted, it is not the best indicator when assessing the 
efficiency because it is not directly related to the real 
difference between the calculated and analytical solution. 
Naturally, in many practical situations, there is no analytical 
solution available to compare, but in a theoretical 
investigation of the type of the present paper, one should 
also compare the efficiency of the schemes in obtaining the 
same error. This point is illustrated by the right panels of 
Figures 2 and 3 which show the actual error at the moment 
of termination of the iterations. Because of the faster 
convergence of our scheme, the error at the moment of 
termination is much less than the error for CD scheme. Our 
error is from 2.5 to 6 times smaller that CD error.  

To corroborate this point, we performed a set of 
numerical experiments (possible only for cases with 
analytical solution) in which we terminated the calculations 
when the norm of the difference between the numerical and 
analytical solutions reached 1.58 10–6, namely  

6ˆ 1 58 10Nu u

where û is defined in Equation (63). The above ‘magic’ 
number depends upon the grid parameters (320 320, in this 
particular case) and reflects the order of approximation of 
the CD scheme, the latter defined by the difference 
operators inverted. Clearly, one cannot approach an 
analytical solution colser than the truncation error. Using 
this new criterion, we secure that the calculations with the 
different schemes arrive at the same distance from the 

analytical solution. Then the number of iterations needed to 
reach the same distance is indeed the proper criterion for 
efficiency.  

Figure 2 Convergence results with  = 10–6y, Equation (66)  
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Figure 3 Convergence results with  = 10–7, Equation (66)  
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First, we show the acceleration archived by the 2-unit scheme 
when the above criterion is satisfied. Figure 4 shows the 
number of iterations needed by the 2-unit scheme to reach 
this criterion of convergence for different values of the 
parameter . One can see that with this more pertinent 
criterion, the advantage of our scheme is even more 
conspicuous. Clearly, in this case  = 4 provides the best 
acceleration. For this reason, we will use always  = 4 in the 
8-unit scheme, and vary only 1. We demonstrate the 
acceleration of the 8-unit scheme in the left panel of Figure 5. 
Now, the overall acceleration achieved is better than nine 
times. For the convenience of the reader, the right panel in 
Figure 5 shows the the same result in logarithmic sale for the 
vertical coordinate. Note that the solid line of Figures 5 is  
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the same result as the solid line in Figure 4.  When assessing 
the efficiency of the scheme, one should be aware that all the 
calculations initially start with the CD scheme. We found that 
optimal choice is to conduct about 30 iterations with the 
original CD scheme before switching to the accelerated 8-unit 
schemes. This was done for two reasons. First, to gather 
information to calculate the a-posteriori value for the norm of 
transition operator T (the factor 1 – p). Second, during the 
first 30 iterations, the small eigenfunctions are damped out 
and only the most die-hard one remains. Only then, the CD 
scheme becomes really slow. Having said that, we can see 
that the ratio between number of needed iterations, Niter of the 
8-unit scheme and the CD scheme is even better than the 
value one can infer from Figure 5. 

Figure 4 Acceleration in terms of error for 2-unit scheme 
achieved with different  for variety of time increments 
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7 Conclusion 
This paper considers an implementation of the operator 
splitting method for Dirichlet problem for the two-
dimensional biharmonic equation in a square domain. A 
generalisation of Douglas-type ADI scheme proposed by 

Conte and Dames (CD scheme) is used as the main vehicle 
for the splitting technique.  

Since the spectral radius for the CD scheme is known to 
be less than one, we were able to show that it is possible to 
construct a scheme containing two CD-type iterations, with 
different arrangements for the explicit approximation of the 
mixed fourth derivative. The two components of the 
iteration unit damp the different eigenfunctions differently 
allowing significant acceleration of the iterative process. 
Our error analysis show that the improved scheme is about 
two to three times faster than the original CD scheme. An 
algorithm is devised implementing the new scheme and the 
numerical results are compared to the exact solutions for 
two different Dirichlet problems. The numerical 
experiments conducted on different grids with up to 1024 
points in each direction, confirm the second order of spatial 
approximation. The theoretical finding about the existence 
of optimal value for the main scheme parameter is 
confirmed by the numerical experiments. The result is 
presented graphically.  

For cases with norm of the transition operator very close 
to unity (very slow convergence of the CD scheme), we 
proposed one more scheme which provides a further 
acceleration over the 2-unit scheme. It makes use of eight 
CD iterations and involves two acceleration paremeters. We 
showed that in the slow convergence cases, the 8-unit 
scheme converges up to nine times faster than the original 
CD scheme. We substantiated this theoretical finding with 
numerical experiment considering an analytical solution for 
which the CD scheme is known to be very slow. Our 
numerical experiments confirmed that, indeed, an 
acceleration of approximately nine times is possible.  

The fact that we were able to accelerate the convergence 
makes the efficiency of the ADI schemes for fourth order 
operators similar to the celebrated efficiency for second-
order operators (e.g. Laplace equation). The methodology of 
acceleration proposed here can be successfully applied to 
any other cases when the norm of the transition operator is 
very close to unity.  
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