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Fourier–Galerkin method for 2D solitons of Boussinesq equation

M.A. Christoua, C.I. Christovb,∗
a Department of Mathematics, University of Cyprus, Cyprus

b Department of Mathematics, University of Louisiana at Lafayette, LA, USA

Available online 28 November 2006

Abstract

We develop a Fourier–Galerkin spectral technique for computing the stationary solutions of 2D generalized wave equations.
To this end a special complete orthonormal system of functions in L2(−∞, ∞) is used for which product formula is available.
The exponential rate of convergence is shown. As a featuring example we consider the Proper Boussinesq Equation (PBE) in 2D
and obtain the shapes of the stationary propagating localized waves. The technique is thoroughly validated and compared to other
numerical results when possible.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.

PACS: 02.60.Cb; 02.70.Hm

Keywords: Galerkin spectral method; Boussinesq equation; Solitons

1. Introduction

One of the most important features of generalized wave equations containing nonlinearity and dispersion, is that
they possess solutions of type of permanent waves which behave in many instances as particles. When the governing
system is fully integrable, such waves are called solitons. In 1D a plethora of deep mathematical results have been
obtained for solitons [7,18,1]. The success was contingent upon the existence of an analytical solution of the respective
nonlinear dispersive equation. Naturally, predominant part of the theoretical results were confined to the 1D case. It is
of high importance to investigate the 2D case, which in most of the cases, can be done only numerically.

The first soliton-supporting generalized wave equation (GWE) was derived by Boussinesq [2] who found its per-
manent solution to be of sech type. The existence of a localized solution proved that a balance between dispersion
and nonlinearity exist. Later on Korteweg and de Vries [17] derived the evolution equation for the wave amplitude
in the moving frame. The same sech is a solution also to KdV equation. To the family of soliton-supporting models
that attracted enormous attention in the recent years, one can also add Sine-Gordon and Schrödinger equations. For all
these equations, finding 2D solitary wave is a must. One should be able to apply the algorithm developed here for the
Boussinesq equation to other soliton-supporting equations.

Targeting a localized solution imposes special requirements on the numerical technique to be used because no
boundary conditions are specified at given points, but rather the square of solution is required to be integrable over the
infinite domain. Such solution is said to belong to the L2(−∞, ∞) space. A number of difficulties are encountered on
the way of application of difference or/and finite-element numerical methods to the problems in L2(−∞, ∞). One of
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the worst setbacks lies in the inevitable reducing of the infinite interval to a finite one. Such a procedure introduces
artificial eigenvalue problems This difficulty can be surmounted if a spectral method is used with basis system of
localized functions which automatically acknowledge the requirement that the solution belongs to L2(−∞, ∞) space.
Here we make use of a complete orthonormal (CON) system of functions proposed in [13]. In a sequence of papers Boyd
[4,5] showed a general way of constructing CON systems in L2(−∞, ∞) by means of coordinate transformation to a
finite interval and consecutive use of Chebyshev polynomials (see [6] for complete reference). The rational functions
[13] are orthogonal without weight and possess an expression for the product of two members of the system into
series with respect to the system (as do the Chebyshev–Boyd functions, but the latter are orthogonal with weight). The
product property is crucial because it allows one to use a Galerkin type of expansion the latter being much simpler and
faster in implementation than the pseudo-spectral algorithm.

A Fourier–Galerkin technique based on the CON system [13] was applied first to KdV and Kuramoto-Sivashinsky
equation in [15]. In [10], the performance of the chosen system was demonstrated and has been extended to equations
with cubic nonlinearity. The case of solitons with oscillatory tails was treated in [9]. The time dependent problem of
interacting 1D solitons was solved in [11,12], but the situation there is different because a superposition of analytical sech
solutions is available to be used as initial condition. In 2D, the first problem to solve is to find the individual shape of the
solitary wave. To this problem is devoted the present paper. The application the CON system [13] to 2D was initiated in
[14] but for the simpler model problem of quadratic Klein–Gordon equation (KGE). KGE is of second order with respect
to spatial derivatives while here we deal with a fourth-order GWE which requires further development of the technique.

2. Boussinesq model of surface waves

We consider the 2D Proper Boussinesq Equation (PBE)

utt = �[u − u2 − �u]

where β > 0 is the dispersion parameter, α the amplitude parameter, and γ is the characteristic speed of the small
disturbances. In our case the solitary wave solution is subject to the asymptotic boundary conditions (a.b.c) u(t, x, y) →
0, for x, y → ±∞.

Upon introducing an auxiliary function q one can show that the PBE follows from the system

utt = �q, q = u − u2 − δ�u, (1)

with boundary conditions

u → 0, q → 0, for x → ±∞, y → ±∞. (2)

Let us consider the case of stationary propagating wave and c1 and c2 are the components of the phase speed of the
center of the localized structure. In a frame moving with the wave one can introduce new independent variables

x̃ = x − c1t and ỹ = y − c2t.

Upon introducing ξ and η into Eq. (1) we get an elliptic system for the stationary localized solution. Since re-scaling
the spatial variables ξ and η does not change the nature of the asymptotic boundary value problem considered here,
we introduce the scalings x̃ = λξ, ỹ = μη and arrive at the following system for the shape of stationary propagating
wave of Boussinesq equation:

0 = λ−2qξξ + μ−2qηη − [λ−2c2
1uξξ + 2λ1μ−1c1c2uξη + μ−2c2

2uηη],

0 = q − u + u2 + λ−2uξξ + μ−2uηη.
(3)

Using the scaling parameters is crucial because they allow one to adjust the characteristic length of the CON system of
functions, to the characteristic length of the sought solution. The importance of the scaling parameter was elucidated
in the comprehensive monograph on spectrum methods [6] where it was shown how the scaling can be included in the
definition of the rational functions from the basis. For series based on Hermit polynomials, the scaling is discussed in
[3]. In the previous works of the authors [9–11], the role of the scaling in 1D problems is demonstrated quantitatively.
In the present paper, we will use the optimal values of the scaling parameters without going into details how they were
selected.
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3. Iterative procedure: operator-splitting scheme

We introduce artificial time in system Eq. (3) and use a time stepping scheme as an iterative procedure to obtain the
solution of the elliptic system. In order to achieve second order of approximation in time we use staggered time stages
for the two functions. To make the time stepping computationally efficient we use the method of operator splitting
[20], arriving at the following scheme:

q̃ − qn−(1/2)

τ
= λ−2q̃ξξ + μ−2qn−(1/2)

ηη − [λ−2c2
1u

n
ξξ + 2λ−1μ−1c1c2u

n
ξη + μ−2c2

2u
n
ηη]

qn+(1/2) − q̃

τ
= μ−2qn+(1/2)

ηη − μ−2qn−(1/2)
ηη

ũ − un

τ
= λ−2ũξξ + μ−2un

ηη + qn+(1/2) − un + (un)2

un+1 − ũ

τ
= μ−2un+1

ηη − μ−2un
ηη

(4)

The intermediate functions q̃, ũ can be eliminated to get “the full-time-step scheme”.

(I + μ−2λ−2τ2∂ξξ∂ηη)
qn+(1/2) − qn−(1/2)

τ
= (μ−2∂2

ηη + λ−2∂ξξ)qn+(1/2)

− (λ−2c2
1u

n
ξξ + 2λ−1μ−1c1c2u

n
ξη + μ−2c2

2u
n
ηη)

(I + μ−2λ−2τ2∂ξξ∂ηη)
un+1 − un−1

τ
= (μ−2∂2

ηη + λ−2∂ξξ)un+1 + qn+(1/2) − un + (un)2,

where I is the identity operator. The mixed second derivatives and the nonlinear term are approximated explicitly and
as a result, the above scheme is not fully implicit. However, its margin of stability is wide enough and one can choose
the increment τ in wide intervals only on the basis of considerations to optimize the rate of convergence. When the
iterations converge for n → ∞, we get that qn+(1/2) → qn−(1/2), un+1 → un which means that the solution of the
original elliptic system, Eq. (3), is obtained.

The method of artificial time is stable because the spatial operators in the right-hand sides of the equations are
negative definite.

4. Fourier–Galerkin method in L2(−∞, ∞)

From the known spectral techniques we choose Galerkin method because it has the advantage of simplicity in
implementation in comparison with the spectral collocation method or tau-method (see the arguments in [6]). The
Galerkin technique requires explicit formulas expressing the products of members of the complete orthonormal (CON)
system into series with respect to the system. We use the CON system introduced in [13]

Sn = ρn + ρ−n−1

i
√

2
, Cn = ρn − ρ−n−1√

2
, ρn(x) = 1√

π

(ix − 1)n

(ix + 1)n+1 , (5)

where functions ρn(x), n = 0, 1, 2, . . . were derived by Wiener [19], as Fourier transforms of the Laguerre functions
(functions of parabolic cylinder). Higgins [16] defined the functions with negative indexes n and proved the com-
pleteness and orthogonality of the system. The significance of the above system for nonlinear problems for localized
solutions was demonstrated in [13], where the product formula was derived. Following the notations form [15] we
have:

CnCk =
∞∑

m=1

βnk,mCm, SnSk =
∞∑

m=1

αnk,mCm, SnCk =
∞∑

m=1

γnk,mSm, (6)
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αnk,m = 1

2
√

2π

{
δm,n+k+1 + δm,|n−k| − δm,n+k − sgn

[
|n − k| − 1

2

]
δm,[|n−k|−(1/2)]

}
,

βnk,m = 1

2
√

2π

{
δm,n+k + δm,|n−k| − δm,n+k+1 − sgn

[
|n − k| − 1

2

]
δm,[|n−k|−(1/2)]

}
,

γnk,m = 1

2
√

2π
{δm,n+k + sgn (n − k)δm,|n−k| − δm,n+k+1 − sgn (n − k)δm,|n−k|−1},

which allows one to develop a Galerkin technique based on this system of functions.
For the first and second derivative of the basis functions one has (see [13])

C′
n = −

∞∑
m=0

θm,nSm, S′
n = −

∞∑
m=0

θm,nCm,

θm,n = 1
2nδm,n−1 − 1

2 (2n + 1)δm,n + 1
2 (n + 1)δm,n+1,

C′′
n =

∞∑
m=0

χm,nCm, S′′
n =

∞∑
m=0

χm,nSm,

χm,n = − 1
4n(n − 1)δm,n−2 + n2δm,n−1 − 1

4 (n + 1)(n + 2)δm,n+2

− 1
4n2 + (2n + 1)2 + (n + 1)2δm,n + (n + 1)2δm,n+1.

Matrix χ is penta-diagonal, which allows using efficient algorithms for banded matrices.
The most important issue for a spectral method is its rate of convergence which can be shown through the following

relationship between the Fourier periodic functions and our system, namely:

Cn(x) = (−1)n
cos(n + 1)θ + cos nθ√

2
, Sn(x) = (−1)n+1 sin(n + 1)θ + sin nθ√

2
,

where x = tan(θ/2) or θ = 2 arctan(x) is a transformation of the independent variable. Note that any function f (x) is
a periodic function of θ with period 2π. Since, the Fourier series have exponential convergence for periodic functions,
then the exponential convergence of Cn, Sn series follows (see, [12]).

We develop the sought functions u, q into series with respect to the subsequences Cn and Sn namely,

u(ξ, η) =
∞∑

m=0

∞∑
n=0

[amnCm(ξ)Cn(η) + bmnSm(ξ)Sn(η)],

q(ξ, η) =
∞∑

k=0

∞∑
j=0

[dkjCk(ξ)Cj(η) + ekjSk(ξ)Sj(η)],

(7)

and the superscripts and/or tildes of the functions carry on to the coefficients when necessary.
Introducing Eq. (7) into Eq. (4) and making use the orthogonality of the system of basis functions we arrive, for the

even functions, to the following coupled systems for the first half-time step:

d̃mn − d
l−(1/2)
mn

τ
= λ−2

∞∑
k=0

∞∑
j=0

ãkjχkj + μ−2
∞∑

k=0

∞∑
j=0

d
l−(1/2)
kj χkj − λ−2c2

1

∞∑
k=0

∞∑
j=0

al
kjχkj − 2λ−1μ−1c1c2

×
∞∑

k=0

∞∑
j=0

al
kjθkjθkj − μ−2c2

2

∞∑
k=0

∞∑
j=0

al
kjχkj

ãmn − al
mn

τ
= λ−2

∞∑
k=0

∞∑
j=0

d
l+(1/2)
kj χkj + μ−2

∞∑
k=0

∞∑
j=0

al
kjχkj + dl+(1/2)

mn − al
mn + Φij,
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where Φij is the coefficient of the expansion of the nonlinear term into series into the system. For the specific CON
system it reads,

∞∑
k1=0

∞∑
k2=0

∞∑
m1=0

∞∑
m2=0

[al
k1m1

al
k2m2

βk1k2m1m2,mn + bl
k1m1

bl
k2m2

αk1k2m1m2,mn],

but it is inefficient to use above expression and face the evaluation of fourtuple sums. Instead, as shown in [12] we can
use the “convolution” sums. We illustrate here the idea of these sums for one of the variable, making use of the explicit
expression for βmnl, namely

N∑
n=0

N∑
m=0

unumCnCm =
N∑

l=0

[
N∑

n=0

N∑
m=0

βnmlunum

]
Cl

def= 1

2
√

2π

N∑
l=0

blCl,

bl =
l−1∑
n=0

unul−1−n −
l∑

n=0

unul−n − 2
N∑

n=l

unun−l + 2
N∑

n=l+1

unun−l−1,

(8)

where ui are the coefficients. Applying Eq. (8) twice for each of the variables x and y we reduce the fourtuple sum for
the coefficients to double sum, which gives a radical reduction of the number of calculations per node.

The second half-time step is the “stabilizing correction” given by the following:

al+1
mn − ãmn

τ
= μ−2

∞∑
k=0

∞∑
j=0

al+1
kj χkj − μ−2

∞∑
k=0

∞∑
j=0

al
kjχkj,

d
l+(1/2)
mn − d̃mn

τ
= μ−2

∞∑
k=0

∞∑
j=0

d
l+(1/2)
kj χkj − μ−2

∞∑
k=0

∞∑
j=0

d
l−(1/2)
kj χkj.

In a similar fashion is obtained the systems for the coefficients of odd functions

ẽmn − e
l−(1/2)
mn

τ
= λ−2

∞∑
k=0

∞∑
j=0

ẽkjχkj + μ−2
∞∑

k=0

∞∑
j=0

e
l−(1/2)
kj χkj − λ−2c2

1

∞∑
k=0

∞∑
j=0

bl
kjχkj

−2λ−1μ−1c1c2

∞∑
k=0

∞∑
j=0

bl
kjθkjθkj − μ−2c2

2

∞∑
k=0

∞∑
j=0

bl
kjχkj

b̃mn − bl
mn

τ
= λ−2

∞∑
k=0

∞∑
j=0

e
l+(1/2)
kj χkj + μ−2

∞∑
k=0

∞∑
j=0

bl
kjχkj + el+(1/2)

mn − bl
mn + Ψmn,

where

Ψmn = 2
∞∑

k1=0

∞∑
k2=0

∞∑
m1=0

∞∑
m2=0

al
k1m1

bl
k2m2

γk1k2m1m2,mn,

is the nonlinear term for which a formula similar to Eq. (8) is derived to render the fourtuple sum to a double sum.
Respectively, the second half-time step is given by

e
l+(1/2)
mn − ẽmn

τ
= μ−2

∞∑
k=0

∞∑
j=0

e
l+(1/2)
kj χkj − μ−2

∞∑
k=0

∞∑
j=0

e
l−(1/2)
kj χkj

bl+1
mn − b̃mn

τ
= μ−2

∞∑
k=0

∞∑
j=0

bl+1
kj χkj − μ−2

∞∑
k=0

∞∑
j=0

bl
kjχkj

In order to avoid the trivial solution we consider the re-scaled vector a = αâ (where α is unknown parameter) and
impose a condition on the first coefficient, say â00 = −1, which makes the system for the coefficients overposed. In
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order to avoid this problem the equation for ˆa00 should not be used together with the rest of the algebraic equations
when solving for âij . Rather, it becomes an explicit relation for determination of α. After al+1 is obtained, the current
iteration for αl+1 is given by

αn+1 = p̃00

τμ−2(
∑∞

k=0
∑∞

j=0 al+1
kj χkj − ∑∞

k=0
∑∞

j=0 al
kjχkj)

.

The initial condition is taken α0 = 1 and then it is iteratively improved according to the above formula with the time
stepping of the coefficients.

Here a note on the computational efficiency of the method is due. If the pseudo-spectral method is employed, one
can use the Fast Fourier Transform. Being reminded that the FFT requires O(5 log(N)N) operations, one can easily
estimate that at N = 20 the pseudo-spectral method becomes more efficient than the Galerkin method (N2 operations)
for the same number of modes from the mere point of view of the number of multiplications per node. However, if the
aim is to achieve the same accuracy, one has to use much larger number of nodes in the pseudo-spectral method than
in the Galerkin method in order to reduce the discretization error. From this point of view we can place the threshold
roughly at N = 50, but this number may increase further if highly oscillating solutions are encountered for which the
discretization error is larger.

Speaking about difference methods, we actually did compare with a difference solution in Section 6 of this paper.
We can only add here that the same accuracy reached by the Galerkin method with 20 nodes (20∗∗3 = 800 operations)
can be obtained only for N = 1600 points which makes N2 = 16002 = 2,560,000 operations. Clearly, finite differences
are not the method of choice for problems on infinite domains.

5. Tests and validations

To validate the performance of the method we begin with the case c1 = c2 = 0 when the solution possesses radial
symmetry and depends only on r =

√
x2 + y2.

First, we check the asymptotic rate of convergence of our algorithm. For the case with radial symmetry, it suffice to
consider the behavior of the series Pi = |pii|, where pii are the even Galerkin coefficients for sought function u. In the
case of radial symmetry one can set the scales equal to each other. As already above mentioned, the theoretical rate of
convergence of our series is exponential, hence the expected behavior is Pi ∼ e−qi. Fig. 1(a) shows the result obtained
for different total number of functions N.

The exponential decay is clearly observed with a best fit function

Pi = pii = 0.0005 e−0.085i.

Fig. 1. The absolute value of a coefficient as function of its number for three different total numbers of functions N: (a) asymptotic decay of
coefficients—0.0005 e−0.085x and (b) first 21 coefficients.
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Fig. 2. Profile of solution u(r) as obtained with different scales and the same number of functions N = 50: (a) asymptotic behavior and (b) energy
containing range.

Note the cusps formed by some of the lines. They correspond to the number for which the actual coefficients become
negative. The effectiveness of the method in this case is really impressive. Taking just 50 functions allows one to obtain
the solution with accuracy 10−5.

Another important characteristic of the method is the extent to which the first several coefficients are affected by the
total number N of functions taken. Fig. 1(b) shows that the first 20 coefficients are indistinguishable for N = 40, 90,
and 200. What is even more amazing is that an accuracy of 10−4 is obtained with just 20 functions. We shall call these
first 20 members of the Galerkin series “the energy containing modes”. Respectively, the domain where the profile is
larger than 10−2 will be called “energy containing range”.

The next verification is to examine the asymptotic behavior of the solution in the configurational space. As shown
above, the asymptotic behavior of the functions of our system is x−1 for the odd sequence, and x−2 for the even. At
the same time the solution with radial symmetry that decays at infinity has the following asymptotic behavior:

u(r) ∼ K0(r) ∼ r−(1/2) e−r, r → ∞,

where the modified Bessel function of the second kind, K0(r), is the solution of the linearized Boussinesq equation
with the proper behavior at infinity. We solved the problem numerically with several different values for the scale
λ−1 = μ−1 = s and N = 50. Fig. 2(a) shows the asymptotic behavior of the profile of the axisymmetric solution for
different values of the scale. It is clear that there exists an optimal scale s ∈ [4, 8] for this particular problem because
the asymptotic behavior is unsatisfactory for both s < 4 and s > 8.

6. Results and discussion

As mentioned in the previous section, when c1 = c2 = 0, the solution is axisymmetric. Then the soliton has perfect
bell shape and the (contour) lines of equal height are concentric circles.

Our numerical investigation unearthed a very peculiar property of the problem under consideration, namely that the
solution shape is not structurally stable when small deviations from radial symmetry are introduced. The meaning is
that even for small deviations of c1, c2 from zero, an important property such as the asymptotic law of decay changes
radically, Our results confirm similar findings obtained with the finite-difference method of [8]. In order to investigate
this symmetry breaking we did calculations with c = 0 and several small values for c2. Fig. 3 shows the result in
logarithmic scale that allows one to discern the tails of the solutions better. For comparison, we note that for c = 0,
Fig. 2(a) shows that the decay is asymptotic down to 10−12 which is the limit of calculations with double precision.
It is clearly seen in Fig. 3 that even for very small c = 0.005 the asymptotic behavior of the solution departs from
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Fig. 3. Evolution of the solution with c2 for c1 = 0 in the two main cross-sections of the 2D shape: (a) y = 0 and (b) x = 0.

the exponential decay at 10−7 which is five orders of magnitude larger. Hence one can conclude that the change of
asymptotic behavior is not a round-off effect.

For |c| 	= 0, the actual asymptotic behavior at infinity is as x−2 and y−2, for the y = 0 and x = 0 cross-sections,
respectively. Since the asymptotic behavior of the functions of our CON system is also second order, one can suspect
that the observed asymptotic behavior is an artifact of the expansion. Yet, for c = 0 the same system of functions gave
perfect exponential decay down to the round off error, with as few as 50 members of the series. In order to clarify this
issue, we compare our solution for c = 0, c2 = 0.6 with the difference solution of [8]. This is demonstrated in Fig. 4
for c1 = 0 and c3 = 0.6.

In Fig. 5, we present the soliton solution when the phase speed along the x-axis is c1 = 0 while the phase speed along
the y-axis is c2 = 0.7 which is fairly large value, close to the critical phase speed c2 = 1. The interesting observation
here is that the soliton develops negative forerunner and back runner (depressions). At the same time, the main hump
is relatively contracted in the direction of motion (the y-axis) while the overall support of the soliton is enlarged

proportionally to the pseudo-Lorentzian factor
√

1 − c2
2.

Fig. 4. Comparison with the FD solution of [8] in asymptotic range for the two main cross-sections: (a) y = 0 and (b) x = 0.
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Fig. 5. Left: soliton shape for c1 = 0, c2 = 0.7, λ = μ = 4 and N = 20. Right: contour lines 1.2, 0.4, 0.1, 0.02, 0.01, −0.01 and −0.02.

This effect is clearly seen in the right panel of Fig. 5 where the contour lines for several typical values are presented.
The negative contour values are not commensurate with the spacing of contours in the positive part of the solution,
because the depressions ahead and behind the propagating solitary wave are very shallow in comparison with the height
of the main hump. One sees that the cross-sections are no longer circles, but ovals whose short axes are aligned with
the direction of motion.

To confirm the hypothesis that the short axes of the ovals are aligned with the direction of motion we did different
computations with different components of the phase velocity, while keeping the modulus the same. We chose an
extremely large phase speed |c| = 0.9 which presents a tough computational case because of the enlarged support of
the wave. The results for the different orientations of the velocity vector of the center of soliton are presented in the
series of figures (Fig. 6). The first figure is for c1 = 0 and c2 = 0.9 (the soliton moves along the y-axis), the second

Fig. 6. (a–c) Soliton shape for c2
1 + c2

2 = c2 = 0.9 but different c1, c2, λ = μ = 4 and N = 20. (d) The contour line 0.1 for five different solitons
with c = 0.9.
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is for c1 = c2 = √
0.405 ≈ 0.6364 (the soliton moves along the bisector of first quadrant), and the third figure is the

case c1 = 0.9 and c2 = 0 (soliton moves along the x-axis). Together with its physical importance, the good agreement
between different shapes (after rotated on 45◦ or 90◦), presents additional verification of the algorithm, because of the
different spectral composition of solution. For the two limiting cases, when the soliton moves along one of the axes, the
series contain only the even sequence of functions, while the other cases involve also the subsequence of odd functions.

Fig. 6(d) presented the contour line 0.1 for different components of the phase speed. It is clearly seen that the short
axis of the oval is aligned with the direction of motion. If rotated, the ovals are virtually indistinguishable, which is an
important verification of the method.

7. Conclusions

In the present paper, the Fourier–Galerkin spectral technique used in previous authors’ works in 1D, is applied
to computing the stationary propagating localized solutions of the 2D Boussinesq equation. The basis is a complete
orthonormal sequence in L2(−∞, ∞) for which the products of nonlinear terms can be expressed into series with
respect to the system. For the fine tuning of the algorithm, scaling factors, λ and μ are introduced for the independent
variable. The algorithm is thoroughly validated by means of self-consistency tests involving different number of
functions and different values for the scaling parameters. The exponential convergence of the Fourier coefficients is
confirmed by the calculations. Results are compared with existing difference solutions and is shown that they are in
good agreement.

The technique developed is used to obtain the shapes of the solitary waves for different phase velocities. The shape
of the axisymmetric wave at rest resembles very much the shape of the 1D sech-soliton of Boussinesq equation, with
the only difference that the 2D shape is higher. Similarly to the 1D case, the support of the propagating waves is
increased by the inverse of the Lorentz factor. An important physical finding in 2D is, that while the overall length
of the support increases, the dimension in the direction of motion is contracted relative to the transverse direction. In
this sense, an overall expansion of the shape is observed with relative contraction in the longitudinal direction, i.e. the
shapes appear to spread more for larger phase speeds, but are relatively “squashed” in the direction of motion. This is
in agreement with our earlier finite-differences computations.

The results obtained here are encouraging and open the possibility of applying the Fourier–Galerkin method to 2D
time dependent problems which will allow investigation of the interaction of solitons in the cases when no analytical
solutions are available.
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