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An operator splitting scheme for the stream-function formulation
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SUMMARY

A fictitious time is introduced into the unsteady equation of the stream function rendering it into a
higher-order ultra-parabolic equation. The convergence with respect to the fictitious time (we call the
latter ‘internal iterations’) allows one to obtain fully implicit nonlinear scheme in full time steps for the
physical-time variable. For particular choice of the artificial time increment, the scheme in full time steps
is of second-order of approximation. For the solution of the internal iteration, a fractional-step scheme is
proposed based on the splitting of the combination of the Laplace, bi-harmonic and advection operators.
A judicious choice for the time staggering of the different parts of the nonlinear advective terms allows
us to prove that the internal iterations are unconditionally stable and convergent. We assess the number
of operations needed per time step and show computational effectiveness of the proposed scheme. We
prove that when the internal iterations converge, the scheme is second-order in physical time and space,
nonlinear, implicit and absolutely stable. The performance of the scheme is demonstrated for the flow
created by oscillatory motion of the lid of a square cavity. All theoretical findings are demonstrated
practically. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The system of Navier–Stokes (N–S) equations describes the motion of incompressible viscous
liquid. The coupling of N–S system comes through the nonlinear terms, the continuity equation,
and the boundary conditions. In numerical solutions of the incompressible N–S, a serious difficulty
arises from the determination of the pressure field. The unknown pressure function provides the
degree of freedom needed to accommodate the incompressibility constraint and requires an implicit
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determination. This means that the incompressible N–S equations are not a system of Cauchy–
Kowalevska type [1] and this aspect can be considered to be their most distinctive feature. Quite
naturally, for the implicit pressure function no boundary conditions (b.c.) are to be prescribed at
the rigid boundaries. This is still another formidable obstacle on the way of constructing fully
implicit schemes. In 2D, the pressure can be eliminated from the equations by means of stream
function � deriving a fourth-order equation for the latter.

In order to reduce the fourth-order equation to a set of second-order elliptic equations, a vorticity
function �= − ∇2� is introduced in many numerical works. The idea to add time derivative of
the stream function in the above equation was first suggested in Reference [2] and the method
was called ‘method of false transients’. The good news about this method was that the system of
equation became parabolic and amenable to iterative approaches. Naturally, the transients do not
follow the real time dependence of the solution and thus it is just an efficient iterative method for
stationary solutions. It was shown [3] that if the artificial time derivative is multiplied by a small
parameter, then the solution approximates the solution of the unsteady problem within the first
order of that small parameter.

Although apparently more tractable, the � − � formulation is inherently explicit, because of
the lack of boundary condition for the vorticity function �. This fact is a straightforward corollary
from the implicit nature of the pressure function. The vorticity is also an implicit function for
which no boundary condition can be specified except for the special cases of prescribed stress
function on a free surface or interface. There is another problem with this semi-explicit approach
connected with the rigorous demonstration of the approximation since it depends on the iterative
process.

The implicit nature of the pressure function (or the vorticity function) requires a special care
for stability of algorithms since the explicit decoupling of the boundary conditions (descendant of
the so-called Thom’s condition) imposes significant limitations on the time increment [2–5] for
stability. The literature offers various approaches to the problems of the iterative decoupling the
system. The continuity equation is decoupled by means of Chorin’s method of fractional steps (see
References [6–8]) in which the velocity field is predicted in the first half-time step and then the
pressure is adjusted in the second half-time step so that the momentum equations are projected
on approximately divergence-free vector field. A comprehensive account of the progress recently
made along these lines can be found in References [9, 10] where the 3D problem is also treated.
This kind of methods are called semi-explicit. One is referred to the comprehensive review [11]
for the literature on the subject.

In the quest for implicit difference scheme, one can use the stream function formulation (�
formulation) without introducing the vorticity function. In doing so, however, one is faced with a
spatially fourth-order (bi-harmonic) problem. While it is now completely natural to pose two b.c.
for �, the price to be paid is the increased order of the boundary value problem. To the limit of our
knowledge, the first numerical solution of N–S with bi-harmonic equation for the stream function
is attempted in Reference [12] using relaxation method. The first implicit stream-function scheme
is presented in Reference [13]. In the present paper, we tackle the problem of creating absolutely
stable implicit scheme for the unsteady � formulation. For the time being we concern ourselves
with the 2D case, but the experience can be translated to 3D without ideological adjustments in
the framework of one of the vector-potential formulations.

A fully implicit scheme in more than one spatial dimensions requires inversion of very large
matrices and is resource intensive. One of the most efficient approaches to reducing the computa-
tional time without compromising the stability of the scheme is the method of operator splitting
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that was introduced in the late 1950s, in References [14–16] (for Russian literature references
see Reference [17]). Generically speaking, this is a fractional step method but in order to avoid
ambiguity of the terminology we will call it ‘operator splitting’ method meaning that a time is
broken into two fractional ‘half-time’ steps in which 1D operators are inverted. The application
of the splitting method to N–S equations in �-formulation is not straightforward because of the
fact that they are not a Cauchy–Kowalevska system and there is no time derivative of the stream
function. What is present in the equation is the term ∇2�t which cannot serve as a basis for
splitting.

For stationary flows where a mixed time-spatial derivative ∇2�t is not present one can add
artificial time and treat the problem as higher-order diffusion equation in which the spatial deriva-
tives are represented by the bi-harmonic operator. For bi-harmonic problems, the first application
of the operator splitting method was outlined in Reference [18]. Application to stationary N–S
equation of the splitting method with artificial time is implemented in Reference [19], whereas
featuring example used is the well known lid-driven cavity flow. The artificial-time approach with
splitting for solving stationary N–S equations was developed further for the primitive variables and
highly accurate and stable results were obtained for the lid-driven flow [20] and the flow behind
a backward-facing step [21].

In order to be able to use the operator splitting method one has to have a time derivative in
the equation, i.e. the equation has to be evolution equation of Cauchy–Kowalevska type. If the
original physical formulation does not feature such a time derivative, the latter can be added as
an artificial time and then to consider the artificial-time evolution as an iterative process to solve
the real physical problem within one single physical time step. This idea was first proposed in
Reference [22]. Some preliminary calculations for the lid-driven flow showed the effectiveness of
the method. Recently, the operator-splitting algorithm was generalized to include an equation for
the transport of passive scalar and applied to the complex thermoconvective flow in vertical slot
under gravity modulations (so-called g-jitter flow) [23].

The main advantage of the approach of the present paper is that the boundary conditions
are treated in strictly implicit fashion in the way they are posed—as two conditions on the
stream function. It is of separate theoretical interest to investigate also the specific problems
when operator splitting methods are used for complex operators involving both Laplacian and
bi-harmonic operators.

Here we concern ourselves with the mathematical problems connected with the new splitting
scheme. We prove the absolute stability and convergence of the internal iterations and the stability of
the scheme for the physical time. Problems connected with the approximation and the consistency
of the scheme are also clarified.

2. GOVERNING EQUATIONS

We consider the 2D N–S equation for incompressible unsteady flows in terms of stream function
� which has the form:

���

�t
+ Re

(
��

�y
���

�x
− ��

�x
���

�y

)
− �2�= 0 (1)
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In dimensionless variables, we may restrict our attention to the closed rectangle D̄={(x, y)|0�x�1,
0�y�1} and Re=UL/� defined as the Reynolds number based on the characteristic length scale
L and velocity U , where we let D denote the open rectangle region. The geometrical simplicity of
the rectangle D̄ makes it easier to exemplify the splitting method described in later sections. The
more complicated region requires more work on coordinate splitting near the boundary [17, 24],
which we will leave for future research. If we have in mind a driven cavity flow, then the boundary
conditions on �D are the following:

� = ��

�x
= 0 for x = 0 and 1

� = ��

�y
= 0 for y = 0

� = 0
��

�y
= g(x, t) for y = 1, 0�x�1 and t>0

(2)

with g(x, t) being the distribution of the longitudinal velocity at the plane y = 1. Generally, other
combinations of boundary conditions can also be treated without much difficulty by the numerical
scheme in our paper. We impose the initial condition for the stream function as follows:

�(x, y, 0) = 0 for all (x, y)∈ D̄ (3)

since in the initial moment the fluid is at rest and the flow is created by the sudden appearance of
velocity distribution at the top boundary y = 1.

3. DIFFERENCE OPERATORS

In order not to obscure the main ideas, we take a uniform grid on the closed rectangle D̄. Let
us divide each of the intervals 0�x�1 and 0�y�1 into M equal subintervals xi�x�xi+1 and N
subintervals y j�y�y j+1 of lengths hx = xi+1 − xi and hy = y j+1 − y j , respectively. Therefore:

�n
ij =�[xi = ihx , y j = jhy, tn = (n − 1)�]

for i = 0, 1, . . . , M ; j = 0, 1, . . . , N ; and n = 1, 2, . . .. Here � is the time increment (time step
length). We also observe that Equation (2) contains first-order spacial derivatives posed on the sides
of the rectangular domain D̄. In order to obtain second-order accuracy difference approximation, the
solution of the problem (which is assumed to be sufficiently smooth) is extended to the additional
intervals of length hx adjacent to the left and right boundaries of the domain, and intervals of
length hy adjacent to the top and bottom of the boundary. This means that we consider an extended
grid overlapping the four boundaries:

x−1 = − hx , x0 = 0, xi = ihx , xM = 1, xM+1 = 1 + hx

y−1 = − hy, y0 = 0, y j = jhy, yN = 1, yN+1 = 1 + hy
(4)

Next, let us introduce the forward and backward difference operators as follows:

(�+
x �)ij = 1

hx
(�i+1, j − �ij), (�−

x �)ij = 1

hx
(�i, j − �i−1, j )
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(�+
y �)ij = 1

hy
(�i, j+1 − �ij), (�−

y �)ij = 1

hy
(�i, j − �i, j−1)

Then we have for the central difference operators

(�x2�)ij = �+
x �−

x = 1

h2x
(�i+1, j − 2�ij + �i−1, j ) (5)

(�y2�)ij = �+
y �−

y = 1

h2y
(�i, j+1 − 2�ij + �i, j−1) (6)

We use the notation (��)ij to denote the implementation of a difference operator � on the function
� at the grid point (ihx , jhy). Then we can write for convenience

−�h = − �+
x �−

x − �+
y �−

y = − �x2 − �y2

The central difference operators �x4 , �y4 , and �x2�y2 approximate the fourth-order derivatives

�4/�x4, �4/�y4 and �4/�2x�2y, namely

(�x4�)ij = (�x2�x2�)ij = 1

h4x
(�i+2, j − 4�i+1, j + 6�ij − 4�i−1, j + �i−2, j ) (7)

(�y4�)ij = (�y2�y2�)ij = 1

h4y
(�i, j+2 − 4�i, j+1 + 6�ij − 4�i, j−1 + �i, j−2) (8)

(�x2�y2�)ij = 1

h2xh
2
y
[�i+1, j+1 − 2�i, j+1 + �i−1, j+1 − 2(�i+1, j − 2�i, j + �i−1, j )

+�i+1, j−1 − 2�i, j−1 + �i−1, j−1]. (9)

Since �x2 and �y2 commute, we have �x2�y2 = �y2�x2 which is very useful for the factorization
of operators in the splitting scheme as presented in a following section.

The following typical notations are used throughout:

(�̂, �̂) = (�̂, �̂) = hxhy

M−1∑
i=1

N−1∑
j=1

�̂ij�̂ij (10)

(��̂, �̂) = hxhy

M−1∑
i=1

N−1∑
j=1

(��̂)ij�̂ij (11)

‖�̂‖= (�̂, �̂)1/2 =
(
hxhy

M−1∑
i=1

N−1∑
j=1

�̂2
ij

)1/2

(12)

where �̂ and �̂ are grid functions defined on the same grid Equation (4) along with � being a
difference operator acting upon the grid function (�̂ij).

We assume that the stream function has continuous derivatives up to eighth order. At this point
is enough to have sixth-order continuous derivatives but when dealing with the pointwise error
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422 C. I. CHRISTOV AND X.-H. TANG

of the splitting scheme, we will have to assume the higher smoothness order. So, for sufficiently
smooth functions, we make use of some general results (see, e.g. Reference [25]):
Theorem 1
Consider the advection operator A

def= a(x, y)(�/�x)+b(x, y)(�/�y). If a = a(x, y, t) and b= b(x,
y, t) satisfy the continuity equation (�a/�x)+ (�b/�y) = 0 for (x, y)∈ D and t�0, then with t�0
fixed, (A�, �) = 0 for � = �(x, y, t) defined on D̄ × {t�0} if one of the following assumptions
holds:

(i) �, as well as a and b, satisfy periodic boundary conditions on �D, with identical values on
the opposite sides of the rectangle.

(ii) � vanishes on �D or a and b are both zeros on �D for t�0.

Theorem 2
If �̂ is the grid function approximating �, it is possible to decompose A into two operators
with respect to different spacial derivatives and construct corresponding second-order difference
operators Ah

x and Ah
y such that Ah = Ah

x + Ah
y and (Ah

x �̂, �̂) = (Ah
y�̂, �̂) = 0, where Ah

x and Ah
y

are defined as

(Ah
x �̂)ij = 1

2hx
(ai+(1/2), j �̂i+1, j − ai−(1/2), j �̂i−1, j )

(Ah
y�̂)ij = 1

2hy
(bi, j+(1/2)�̂i, j+1 − bi, j−(1/2)�̂i, j−1)

(13)

where

ai+(1/2), j = ai+1, j + ai, j
2

, ai−(1/2), j = ai, j + ai−1, j

2

bi, j+(1/2) = bi, j+1 + bi, j
2

, bi, j−(1/2) = bi, j + bi, j−1

2

(14)

Following a coinage from [25], we call this kind of difference operators antisymmetric (or con-
servative).

The approximation of the nonlinear terms is the other formidable obstacle on the way of
constructing of a successful numerical schemes for N–S equations. It is well known that the
symmetric central differences for the advective terms can lead to instability. A successful remedy
to this difficulty is to use upwind differences but then the spatial approximation is reduced to
first order, namely O(hRe). This is hardly acceptable for moderate and large Reynolds numbers.
Another approach is to use conservative approximation of the nonlinear term as suggested in
Reference [26] for inviscid problems. A conservative approximation of the nonlinear term secures
that the energy would not increase in time which allows to make the scheme stable. In addition,
a conservative central-difference approximation does not introduce scheme diffusion (viscosity).
Naturally, the conservative approximation does not remove the scheme dispersion and hence one
cannot secure monotonicity of the scheme, but the effects connected with the scheme dispersion
are of the second-order O(h2) and result mostly in phase errors.

The above arguments define our choice to use in the present work a scheme that is adaptation
of the classical Arakawa scheme [26] to the implicit operator splitting.
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Usually, the advective nonlinear terms can be written in the form A� = a(x, y, t)(��/�x) +
b(x, y, t)(��/�y), where a and b can be generally functions of the transported scalar �, but at a
given time stage they are considered as known functions of the spatial coordinates and time (the so-
called concept of ‘frozen coefficients’). The analytical properties and numerical treatments of the
operator A are exhaustively discussed in Reference [25] for the case when (�a/�x)+ (�b/�y) = 0.

In �−� variables, a and b are, respectively, the velocity components ��/�y and −��/�x , and
� = − �� is considered as a scalar substance transported by the flow. In the previous authors’
works, this kind of interpretation of the advective terms was widely used to achieve different level
of refinement of the approximation. In this paper, we acknowledge better the requirements for
strictly conservative splitting schemes for �-formulation. To this end, we observe that similarly to
velocity components, the functions

P = − ���

�y
and Q = ���

�x

satisfy a continuity-like equation (�P/�x) + (�Q/�y) = 0 on D̄ × {t�0}. Then we rewrite the
convection terms as follows:

A� = P
��

�x
+ Q

��

�y

hinting at the idea that now the vorticity can be thought of as a known function while approximating
the advective terms. Accordingly, the derivatives of the stream function are treated implicitly. In
order to improve the order of approximation in time, one can use the the standard extrapolation
formula

�̂n+(1/2)
ij

def= 3

2
�n
ij −

1

2
�n−1
ij = �n+(1/2)

ij + O(�2)

when evaluating the coefficients P and Q. We achieve second-order approximation in time on the
expense of using a multilevel scheme. However, this is not a real shortcoming, because one can
always set �1/2 =�0 introducing an error O(�) in the initial condition. Even this error can easily
be corrected if needed by some kind of corrector scheme used only for the first time step. Thus

Pn+(1/2)
ij = − 1

2hy
[(�h�̂

n+(1/2))i, j+1 − (�h�̂
n+(1/2))i, j−1]

= −���

�y

(
ihx , jhy, � (n + 1/2)

)+ O(�2 + h2x + h2y) (15)

for i = 0, 1, . . . , M; j = 1, . . . , N − 1.

Qn+(1/2)
ij = 1

2hx
[(�h�̂

n+(1/2))i+1, j − (�h�̂
n+(1/2))i−1, j ]

= ���

�x

(
ihx , jhy, � (n + 1/2)

)+ O(�2 + h2x + h2y) (16)

for i = 1, . . . , M − 1; j = 0, 1, . . . , N .
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We construct antisymmetric difference operators,Cn+(1/2)
x andCn+(1/2)

y along x and y directions,
respectively, acting upon � in the middle time stage (n + 1

2 ) in order to secure second-order
approximation with respect to time. For the sake of demonstrating the approximation, we use the
notation

�n+(1/2)
ij

def= 1
2 (�

n
ij + �n+1

ij ) (17)

but in the actual implementation of the algorithm, the values of the grid function �n+1 are
considered unknown, while the values of �n are treated as known. Acknowledging the fact that
the stream function � vanishes on the boundary, we can use Theorems 1 and 2 to identify the
antisymmetric advective operators as follows:

(Cn+(1/2)
x �n+(1/2))ij = 1

2hx
(Pn+(1/2)

i+(1/2), j�
n+(1/2)
i+1, j − Pn+(1/2)

i−(1/2), j�
n+(1/2)
i−1, j )

(Cn+(1/2)
y �n+(1/2))ij = 1

2hy
(Qn+(1/2)

i, j+(1/2)�
n+(1/2)
i, j+1 − Qn+(1/2)

i, j−(1/2)�
n+(1/2)
i, j−1 )

(18)

for i = 1, . . . , M − 1, j = 1, . . . , N − 1. Here P and Q are evaluated from the following finite
differences with the second-order accuracy O(h2x + h2y + �2), namely:

Pn+(1/2)
i+(1/2), j = Pn+(1/2)

i+1, j + Pn+(1/2)
i, j

2
, Pn+(1/2)

i−(1/2), j =
Pn+(1/2)
i, j + Pn+(1/2)

i−1, j

2

Qn+(1/2)
i, j+(1/2) = Qn+(1/2)

i, j+1 + Qn+(1/2)
i, j

2
, Qn+(1/2)

i, j−(1/2) = Qn+(1/2)
i, j + Qn+(1/2)

i, j−1

2

(19)

One should be noted, that the last formulas are essential in constructing the conservative approx-
imation. One can compute the values of P and Q at the middle lines i ± 1

2 and j ± 1
2 using

some different approximations of equalities (15), (16), but then it will not be possible to make the
approximation conservative.

Due to Theorem 2 we have that the operators in Equation (18) are anti-symmetric (or conser-
vative), namely

(Cn+(1/2)
x �,�) = 0, (Cn+(1/2)

y �, �) = 0, �∈ � (20)

4. NONHOMOGENEOUS BOUNDARY CONDITION AND DIFFERENCE SCHEME

Equations (1) and (2) pose a boundary value problem comprising a homogeneous partial differential
equation for stream function � and nonhomogeneous boundary conditions. The outline of the ideas
of this section is the following: in order to apply Fourier analysis of the numerical problem, we
have to eliminate the nonhomogeneous boundary conditions by using the difference analogs of the
boundary conditions, the accuracy of which matches that of our final difference equations. Then
we obtain a nonhomogeneous system of difference equations by moving all nonhomogeneous
boundary conditions to the right-hand side of the system.

By the definitions of the difference operators Cn+(1/2)
x and Cn+(1/2)

y , Equations (17)–(19), we are
able to give the difference approximation for Equation (1) based on the Crank–Nicholson scheme
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the form:

(�h(�
n+1 − �n))ij

�
+
(

[Re(Cn+(1/2)
x + Cn+(1/2)

y )

−(�x4 + �y4 + 2�x2�y2)]
�n+1 + �n

2

)
ij

= Fn+(1/2)
ij (21)

for i = 1, . . . , M − 1 and j = 1, . . . , N − 1.
From the previous section, it is easy to verify that Equation (21) is of second-order of accu-

racy both in time and space. Therefore we need to construct difference analogs of the boundary
conditions with the accuracy of the same order at every time step t = n�, which are given as
follows:

�n
0, j =�n

M, j = 0

�n
i,0 = �n

i,N = 0

�n
1, j − �n

−1, j = 0, �n
M+1, j − �n

M−1, j = 0

�n
i,1 − �n

i,−1 = 0, �n
i,N+1 = �n

i,N−1 + 2hyg
n
i

(22)

for i = 1, . . . , M − 1 and j = 1, . . . , N − 1 with gni = g(ih, n�).
Now, we substitute Equation (22) into Equation (21) and then move all newly generated in-

homogeneous terms to right-hand side of the system of difference equations. Here Fij is the
nonhomogeneous term of the system and due to the above mentioned b.c., has the form:

Fn+(1/2)
ij =

⎧⎪⎨
⎪⎩

1

h3y
(gn+1

i + gni ) if j = N − 1 and i = 1, . . . , M − 1

0 otherwise

(23)

but now the boundary conditions are homogeneous at every time step t = n�:

�n
0, j = �n

M, j = 0

�n
i,0 = �n

i,N = 0

�n
1, j = �n

−1, j , �n
M+1, j = �n

M−1, j

�n
i,1 = �n

i,−1, �n
i,N+1 = �n

i,N−1

(24)

for i = 1, . . . , M − 1 and j = 1, . . . , N − 1.
An important note is due here about the possible discontinuity in boundary conditions. The strict

results proved in the present paper and in most of the papers in the literature are valid for boundary
conditions that are smooth for the normal derivatives. For instance, the lid-driven cavity flow which
is the benchmark for every new algorithm proposed, has discontinuous normal derivative at the
upper corners of the cavity where the lid touches the side walls. In fact the derivative (the respective
velocity component) is supposed to jump from zero to one in an infinitesimal neighborhood of
the corner point. This means that the quantities g are of unit order in the points inside the regions
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that are adjacent to the corner points. Clearly, this will destroy the local approximation of the
scheme, but it does nothing more harmful than that. This means that the global estimate of the
error remains of second-order O(h2) and the contribution of a small bunch of points near the
corners is negligible. The practical computations (as presented in numerous paper in the literature,
as well as in the last section of the present work) do show that this is the case. Naturally if one
assumes that the velocity in the lid plane continuously increase from zero to one in the point next
to the corner, one can still consider the function g as continuous but with very large derivative.
Then one arrives at the same conclusion about the overall approximation. Clearly, when the b.c.
is continuous, then it is easily shown that the above quantities g from Equation (23) are of order
O(h) and this secures the pointwise second order of the approximation. This problem is common
for all known from the literature approaches and its deep investigation goes beyond the scope of
present work.

5. POSITIVITY OF THE DIFFERENCE OPERATORS

Before we show that scheme Equations (21), (24) is absolutely stable, we consider the issues
connected with the positivity of the operators involved in the scheme. For convenience, we use
(�ij) ∈ �, to denote the grid function in our computations that satisfy the homogeneous bound-
ary condition Equation (24). Note that the grid where space � is originally defined contains
(M −1)× (N −1) internal points. Since the boundary conditions Equation (24) provide an one-to-
one correspondence between the functions defined on the internal grid and the functions defined
on the extended grid, then � is a space of (M + 3) × (N + 3) matrices.

Theorem 3 (Smarskii [27])
−�h is positive definite and self-adjoint, i.e.

(−�h�, �) = hxhy

M∑
i=1

N∑
j=1

[(�−
x �)2ij + (�−

y �)2ij]>0

(−�h�,�∗) = (�,−�h�
∗) = hxhy

M∑
i=1

N∑
j=1

[(�−
x �)ij(�

−
x �∗)ij + (�−

y �)ij(�
−
y �∗)ij]

provided that � and �∗ ∈ � and � is non-zero grid function (see, e.g. [27]).
We prove the following theorems to show the positivity of the operators �x4 , �y4 and �x2�y2 .

Theorem 4
If the operators are defined on the domain �, then

(i) �x4 and �y4 are positive definite,
(ii) �x2�y2 is also positive definite.

Proof
(i) At first we show (�x4�,�)>0 provided �∈ � is not zero vector. We may fix the index j and
investigate the inner product along each x grid line. For the sake of brevity we can omit the index
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j in the following equations:

h4x
M−1∑
i=1

(�x4�)ij�ij =
M−1∑
i=1

(6�2
i − 4�i�i−1 − 4�i�i+1 + �i�i−2 + �i�i+2) (25)

h4x
M−1∑
i=1

(�+
x �−

x �)2ij =
M−1∑
i=1

(�i+1 − 2�i + �i−1)
2

=
M−1∑
i=1

(�2
i−1 + �2

i+1 + 4�2
i + 2�i−1�i+1 − 4�i�i+1 − 4�i�i−1) (26)

Then we use the homogeneous boundary conditions Equation (24) and rename the index (increase
or decrease the original index by one) in the summations to verify the equivalence relations:

M−1∑
i=1

�2
i+1 =

(
M−1∑
i=1

�2
i

)
− �2

1,
M−1∑
i=1

�2
i−1 =

(
M−1∑
i=1

�2
i

)
− �2

M−1 (27)

Respectively

M−1∑
i=1

�i−1�i+1 =
M−2∑
i=0

�i�i+2 =
(
M−1∑
i=1

�i�i+2

)
+ �0�2 − �M−1�M+1

=
(
M−1∑
i=1

�i�i+2

)
− �2

M−1 (28)

Similarly we can write Equation (28) as:

M−1∑
i=1

�i−1�i+1 =
(
M−1∑
i=1

�i�i−2

)
− �2

1 (29)

Finally we substitute Equations (27)–(29) into Equation (26) to obtain:

h4x
M−1∑
i=1

(�x4�)ij�ij = h4x

[
M−1∑
i=1

(�+
x �−

x �)2ij

]
+ 2�2

1 + 2�2
M−1>0 (30)

After adding Equation (30) up going through j index from 1 to N − 1, we complete the proof of
the positive definiteness of �x4 . Similarly, we can show the theorem about �y4 .

(ii) Using the same techniques and going through similar steps, we can verify the following:

M−1∑
i=1

N−1∑
j=1

(�x2�y2�)ij�ij =
M−1∑
i=0

N∑
j=1

(�+
x �−

y �)2ij>0 (31)

Therefore, the proof is completed. �

Next, we give some useful theorems about the norm estimates of certain linear operators that
appear in the analysis of our difference scheme. Actually, all linear operators in the difference
scheme are matrices. For convenience, we use the notations of the difference operators to denote
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the corresponding matrices and denote E as the identity matrix from then on. We define the norm
of a matrix A based on the inner product Equation (10) as

‖A‖= sup
��=0, �∈�

(A�, A�)1/2

(�,�)1/2
= max

(�,�)1/2=1, �∈�
(A�, A�)1/2 (32)

It should be noted here that the domain in r.h.s is a compact sphere, which allows us to use
hereafter max instead of sup in both definitions.

Kellogg’s Lemma (Marchuk [25])
For any positive definite matrix A and for any �>0 one has

‖(E + �A)−1‖<1 (33)

Now, following Reference [25] we introduce a useful norm ‖ · ‖H defined for any grid function
� ∈ � which means (�ij) is defined on the grids Equation (4) and satisfies the boundary conditions
Equation (24), namely

‖�‖H =
(
hxhy

M∑
i=1

N∑
j=1

[(�−
x �)2ij + (�−

y �)2ij]
)1/2

= (−�h�, �)1/2 (34)

Since � vanishes on �D, it is easy to verify that ‖�‖H = 0 only when � is zero and that some other
elementary properties of a norm hold for Equation (34). Similarly, we define the corresponding
norm of a matrix A based on this norm as

‖A‖H = max
��=0
�∈�

‖A�‖H
‖�‖H (35)

For convenience, we denote

B
def= −Re(Cn+(1/2)

x + Cn+(1/2)
y ) + (�x4 + �y4 + 2�x2�y2) (36)

By Theorem 4 and Equation (20) we get that (B�, �)>0 for � �= 0, i.e. B is positive definite (or
B>0).
The following theorem is one of the key results of the present paper.

Theorem 5
If �>0, then ‖(−�h + (�/2)B)−1(−�h − (�/2)B)‖H<1.

Proof
Let �= (−�h + (�/2)B)−1(−�h − (�/2)B)� for an arbitrary �∈ �. Then �∈ �, since (−�h +
(�/2)B)>0 is invertible to solve the solution on the interior grid points and we can pose the
boundary conditions Equation (24) on � freely. so we have(

−�h + �

2
B
)

�=
(
−�h − �

2
B
)

�

which can be rewritten as

(−�h�) − (−�h�) = �

2
B(� + �) (37)
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Taking the inner product with (� + �) on both sides of Equation (37) and applying Theorem 3
(ensuring that −�h is self-adjoint) we obtain:

(−�h�,�) − (−�h�, �) = ‖�‖2H − ‖�‖2H = �

2
(B(� + �), (� + �))>0 (38)

where definition (34) is used for ‖�‖2H = (−�h�, �).
Therefore ‖�‖2H>‖�‖2H and hence ‖(−�h + (�/2)B)−1(−�h − (�/2)B)‖H<1 which completes

the proof. �

6. STABILITY ANALYSIS OF THE FINITE DIFFERENCE SCHEME

To analyse the stability of our difference scheme Equation (21), we prove the following theorem.

Theorem 6
If the boundary condition g(x, t) at y = 1 is assumed to be sufficiently smooth in [0, 1] × [0, T ],
the difference scheme Equation (21) with Equation (24) is absolutely stable.

Proof
Using previously defined notations we can rewrite Equation (21) as(

−�h + �

2
B
)

�n+1 =
(
−�h − �

2
B
)

�n − �Fn+(1/2)
ij

Then,

�n+1 =
(
−�h + �

2
B
)−1 (−�h − �

2
B
)

�n − �
(
−�h + �

2
B
)−1

Fn+(1/2)
ij (39)

Here, Fn+(1/2)
ij is given by Equation (23) and we observe that Fn+(1/2)

ij is a vector defined on the
interior grid points. Then it is possible to construct a difference analog of the Poisson’s equation
with Fn+(1/2)

ij playing the role of the nonhomogeneous term in the difference equation, namely

(�hW
n)i, j = Fn+(1/2)

ij (40)

for i = 1, . . . , M − 1 and j = 1, . . . , N − 1, with boundary conditions:

Wn
0, j =Wn

M, j = 0, Wn
i,0 =Wn

i,N = 0 (41)

for i = 1, . . . , M − 1 and j = 1, . . . , N − 1.
Since the matrix �h is not singular, there exists a solution Wn ∈ � for Equations (40), (41).

Then we rewrite Equation (39) as

�n+1 =
(
−�h + �

2
B
)−1 (−�h − �

2
B
)

�n + �

[(
−�h + �

2
B
)−1

(−�h)

]
Wn (42)

Next, we show ‖(−�h + (�/2)B)−1(−�h)‖H�1. We let nonzero �∈ � and

	 =
[(

−�h + �

2
B
)−1

(−�h)

]
� (43)
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and then (
−�h + �

2
B
)

	 = − �h� (44)

where we pose the same boundary conditions Equation (24) for 	, since (−�h + (�/2)B)>0 and
−�h are invertible under the boundary condition Equation (24). Hence 	 ∈ � and 	 is nonzero.
By Theorem 3, we take the inner product with 	 on both sides of Equation (44) to obtain:

‖	‖2H + �

2
(B	, 	) = hxhy

M∑
i=1

N∑
j=1

[(∇i	)ij(∇i�)ij + (∇ j	)ij(∇ j�)ij]�‖	‖H‖�‖H (45)

where we apply the Cauchy–Schwartz inequality. Since (B	, 	)>0, then

‖	‖2H<‖	‖H‖�‖H , ‖	‖H<‖�‖H
which proves that ∥∥∥∥∥

(
−�h + B

2

)−1

(−�h)

∥∥∥∥∥
H

<1 �

By Theorem 5 and Equation (42), we obtain:

‖�n+1‖H �
∥∥∥∥(−�h + �

2
B
)−1 (−�h − �

2
B
)∥∥∥∥

H
‖�n‖H

+ �

∥∥∥∥(−�h + �

2
B
)−1

(−�h)

∥∥∥∥
H

‖Wn‖H<‖�n‖H + �‖Wn‖H (46)

By Equation (34), we have

‖Wn‖2H = (−�Wn,Wn) = (−Fn+(1/2),Wn)�‖Fn+(1/2)‖ ‖Wn‖ (47)

and since �−1
h is a well-defined linear operator, then

‖Wn‖�‖�−1
h ‖ ‖Fn+(1/2)‖

Introducing the last equality in (47) we get

‖Wn‖H�‖�−1
h ‖(1/2)‖Fn+(1/2)‖ (48)

Since the boundary condition g(x, t) is assumed to be sufficiently smooth in [0, 1] × [0, T ], then
‖Fn+(1/2)‖ is bounded in [0, T ] for each n, accordingly. By Equation (48), we can let

‖W‖H = max
n

‖Wn‖H (49)

By induction with respect to index n in Equation (45), we finally obtain the inequality

‖�n+1‖H<‖�1‖H + n�‖W‖H (50)

where �1 is the initial condition and n� is always less than the length of the time interval for our
computation. By Equation (50), we have shown the absolute stability of scheme Equation (21) in
the sense of Neumann [25].
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7. SPLITTING SCHEME FOR THE INTERNAL ITERATIONS

To solve the difference equation (21) with Equation (24) directly, one has to invert the matrix
representing the 2D operator (−�h + (�/2)B). Since the unknown grid function is a vector of
dimension K = (M − 1) × (N − 1), the size of the matrix is K × K which renders impractical
the straightforward implicit scheme Equation (21). Although the matrix is sparse with only nine
nontrivial diagonals, the actual width of the band is 4(N + 3) + 1 and that is what matters when
treating the system as a system with a banded matrix. Hence, even when using specialized solvers
customized for banded matrices, the amount of computations on finer meshes can be staggering.
This is the standard case with any fully implicit scheme. A well recognized way to reduce drastically
the computations is the operator splitting method.

Direct application of operator splitting is impossible because there is no time derivative of
the stream function in the governing equation. This reflects the fact that the N–S equations are
not Cauchy–Kowalevska system. For this reason we focus on devising an iterative procedure
for computing �n+1 from the fully implicit scheme Equation (21) treating it as a nonlinear
elliptic equation for the unknown grid function �n+1 in which equation the coefficients and the
inhomogeneous term are function of the already known grid functions �n and �n−1. In such an
approach, the time increment � may be considered as a constant coefficient. Respectively all the
terms containing of �n and the variable coefficients of the operators Cn+(1/2)

x and Cn+(1/2)
y are

known. This leads to a ‘stationary’ problem for solving �n+1 in each time step. An effective
iterative procedure can be devised if an artificial time is added and then an operator splitting
technique is employed.

Douglas [15, 16], Peaceman and Rachford [14], and Yanenko [17] presented different iterative
processes implementing splitting methods. These have been widely applied to stationary problems
in mathematical physics and have proved to be successful in many numerical works. We will follow
their ideas (called now ‘operator splitting’) to construct our scheme in this paper. Specifically Conte
and Dames [18] were the first to adapt the Douglas scheme to the case of bi-harmonic operator.
The CD scheme exhibits the best of the world of ADI schemes, as being absolutely stable and
low cost per iteration, but its rate of convergence has been shown to be rather slow in some cases
(see References [28, 29]). Recently the present authors contributed a modification of CD scheme
that can be radically faster [30, 31]. The acceleration technique can be used also for the stream
function formulation but it goes beyond the scope of the present work which is mostly concerned
with the idea of using artificial time and splitting algorithms.

It is important to realize that the original implicit scheme (21) is not amenable to operator
splitting. However, when we confine our attention only to the difference scheme Equation (21) for
a given time step, that is, the linear system with variable coefficients time-stepping �n to �n+1.

Denote the matrices

Ax = − 1

�
�x2 + Bx , Bx = − Re

2
Cn+(1/2)
x + 1

2
�x4 (51)

Ay = − 1

�
�y2 + By, By = − Re

2
Cn+(1/2)
y + 1

2
�y4 (52)

A= Ax + Ay (53)
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It is easy to verify that Ax ,Ay and A are positive definite and �x2�y2 = �y2�x2 by Equations (5),
(6) and (9). Now we write the given vector Gn computed by �n in Equation (21) as

Gn =−F +
[
−1

�
�h + Re

2
(Cn+(1/2)

x + Cn+(1/2)
y ) − 1

2
(�x4 + �y4 + 2�x2�y2)

]
�n (54)

Then we recast Equation (21) into:

(A + 2�x2�y2)�
n+1 =Gn (55)

Since the above difference scheme approximates an equation whose highest-order derivatives cor-
respond to the bi-harmonic operator, we can treat our scheme as a scheme for bi-harmonic equation.
Note that the matrix (A+2�x2�y2) is positive definite by Theorem 4 and (36). When Gn is given,

to solve for the unknown grid function �n+1 means to invert the 2D matrix (A + 2�x2�y2) in
Equation (55). This is a well-posed stationary problem where 1/� in A acts as a given coefficient.

We add to the left-hand side of Equation (55) a derivative (�n+1, k+1 − �n+1, k)/� with respect
to an artificial time with increment (time step) �. Here the notation �n+1,k denotes the solution of
the kth internal iteration from the initial value of the iteration

�n+1,0 def= �n (56)

Consequently, we replace the original stationary problem by an artificial unsteady problem:

�n+1,k+1 − �n+1,k

�
+ (A + �x2�y2)�

n+1,k+1 =Gn (57)

Since we are interested only in the stationary solution, we need not care for the order of
approximation in the artificial time. The main concerns here are the stability and convergence
of the iterative scheme. Usually, a first-order in time scheme has better margin of stability when
nonlinearity is added and as a rule shows faster convergence. Equation (57) shows how a first-order
in time fully implicit scheme for �n+1,k+1 should look like. We call it ‘the scheme in full time
steps’. It can be rewritten as follows:

�n+1,k+1 = (E + �(A + �x2�y2))
−1�n+1,k + �(E + �(A + �x2�y2))

−1Gn (58)

Since ‖(E + �(A + �x2�y2))
−1‖<1 for any �>0 by Kellogg’s lemma, it is easy to show that

Equation (58) is absolutely stable. But, once again, the implementation of this scheme requires
inverting a matrix (E +�(A+�x2�y2)) of size (MN )2 with a very large band, so that the iterative
scheme Equation (57) is not constructive whereas it is the reliable starting point to construct an
economical time-stepping scheme. To this end, we use the classical factorization based on the
coordinate splitting of the operator.

To implement the splitting scheme for the internal iterations, we need to deal with the matrix
�x2�y2 approximating the mixed derivative in the equation. Generally, in the splitting scheme for
usual nonstationary problems �x2�y2 is treated explicitly because it cannot be split. But the posi-
tivity of �x2�y2 will enlarge the norm of the transition operator for the splitting scheme when it is
treated explicitly and prevent the unconditional stability of the scheme. As it is shown in what fol-
lows, the application of splitting can make the approximation of the mixed derivative fully implicit.

Another novel element of the present scheme is the implicit treatment of the nonlinear terms
which is a continuation of the ideas of the cited author’s works. The trade-off of this approach is

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:417–442
DOI: 10.1002/fld



SPLITTING SCHEME FOR UNSTEADY NAVIER–STOKES EQUATION 433

that the operators Ax and Ay in our scheme have variable coefficients and do not commute. This
requires more efforts in analysing the norm of the transition operator, but the rigorous result about
the stability and convergence of the scheme makes it unique and justifies the efforts. The fortunate
feature of the N–S equations in stream function formulation is that the mixed fourth derivative
is a product of the two one-dimensional second-order operators. Then the splitting method offers
a unique opportunity to make the approximation of the fourth-order derivative implicit without
having to invert the non-definite matrix approximating such a derivative.

The respective coefficients contain the matrices �x2 and �y2 multiplied by ratio �/� between the
time increment � and the artificial time increment � which allows one to adjust the values of these
coefficients through a judicious choice of �. Particularly, when we set � = �2, the mixed derivative
can be treated totally implicit through the factorization of the matrix (E +�(Ax + Ay)+�2Ax Ay).
This is one of the main new results of the present paper.

Now by this special choice of the artificial time step �, we are ready to write down the splitting
scheme as follows:

�n+1,k+1 − �n+1,k

�
+(Ax + Ay)�

n+1,k+1+�x2�y2�
n+1,k+1+�D(�n+1,k+1 − �n) =Gn (59)

where the matrix D is defined as

D = Ax Ay − 1

�2
�x2�y2 =

(
− Re

2
Cn+(1/2)
x + 1

2
�x4

)(
− Re

2
Cn+(1/2)
y + 1

2
�y4

)

+ 1

�
�x2

(
Re

2
Cn+(1/2)
y − 1

2
�y4

)
+ 1

�
�y2

(
Re

2
Cn+(1/2)
x − 1

2
�x4

)
(60)

It is easy to see that we add a small term �D(�n,k+1 − �n) on the right-hand side of Equation
(58) to obtain Equation (59) and

(�D + �x2�y2)�
n+1,k+1 =

(
�Ax Ay − �

�2
�x2�y2 + �x2�y2

)
�n+1,k+1 = �Ax Ay�

n+1,k+1 (61)

since �/�2 = 1. Then � is multiplied on both sides of Equation (59) and consequently by Equation
(61) the final version of our splitting scheme is obtained by the factorization of the matrices on
the right-hand side:

(E + �Ax )(E + �Ay)�
n+1,k+1 = �n+1,k + �Gn + �2D�n (62)

Theorem 7
The splitting scheme Equation (62) is absolutely stable.

Proof
We rewrite Equation (62) as

�n+1,k+1 = (E+�Ay)
−1(E+�Ax )

−1�n+1,k+�(E+�Ay)
−1(E+�Ax )

−1(Gn+�D�n) (63)

Then

‖�n+1,k+1‖ � ‖(E + �Ay)
−1‖ ‖(E + �Ax )

−1‖ ‖�n+1,k‖
+ �‖(E + �Ay)

−1‖ ‖(E + �Ax )
−1‖ ‖(Gn + �D�n)‖ (64)
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Since Ax>0 and Ay>0, we have ‖(E +�Ay)
−1‖<1 and ‖(E +�Ax )

−1‖<1 by Kellogg’s lemma.
So

‖�n+1,k+1‖<‖�n+1,k‖ + �‖(Gn + �D�n)‖
and hence by the induction of index k, we have

‖�n+1,k‖<‖�n+1,0‖ + k�‖(Gn + �D�n+1,0)‖
and by definition (56)

‖�n+1,k‖<‖�n‖ + k�‖(Gn + �D�n)‖
where Gn is considered as a constant grid function in the internal iterations for the (n + 1)th full
time step. Consequently, Equation (62) is absolutely stable. �

Theorem 8
The internal iterative procedure for the splitting scheme Equation (62) converges, in the sense that
limk→∞ �n+1,k exists.

Proof
We write Equation (62) for the kth iteration as

�n+1,k = (E+�Ay)
−1(E+�Ax )

−1�n+1,k−1+�(E+�Ay)
−1(E+�Ax )

−1(Gn+�D�n) (65)

Then subtract Equation (65) from Equation (62):

�n+1,k+1 − �n+1,k = (E + �Ay)
−1(E + �Ax )

−1(�n+1,k − �n+1,k−1) (66)

Hence

‖�n+1,k+1 − �n+1,k‖ � ‖(E + �Ay)
−1‖ ‖(E + �Ax )

−1‖ ‖�n+1,k − �n+1,k−1‖
< p1 p2‖�n+1,k − �n+1,k−1‖ (67)

where p1 and p2 are constants such that

‖(E + �Ay)
−1‖�p1<1, ‖(E + �Ax )

−1‖�p2<1 (68)

since matrices Ax and Ay are fixed through all internal iterations for the same n. Clearly, Equation
(68) implies that limk→∞ �n+1,k exists. �

Theorem 6 asserts that the difference scheme Equation (21) is absolutely stable with respect
to the real time for any time step �, and that the solution �n+1 exists for each time step. Now
we prove that the internal iterations can be designed to obtain a solution which approximates the
solution �n+1 from Equation (21) within the order O(�2 + h2x + h2y) agreeing with the order by
which the finite difference scheme Equation (21) approximates the differential equation. Denote

vk = �n+1,k − �n+1, v0 = �n − �n+1

then subtract Equation (55) from Equation (59) to have:

vk+1 − vk

�2
+ (Ax + Ay + �x2�y2)v

k+1 + �2
(
Ax Ay − �x2�y2

�2

)
(vk+1 − v0) = 0 (69)
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and then multiply Equation (69) by �2 to complete the factorization:

(E + �2Ax )(E + �2Ay)v
k+1 = vk + �4

(
Ax Ay − �x2�y2

�2

)
v0 (70)

Denote now the transition matrix as T = (E + �2Ay)
−1(E + �2Ax )

−1. Then

vk+1 = T vk + �4T

(
Ax Ay − �x2�y2

�2

)
v0 (71)

since we have shown that ‖T ‖<p1 p2<1 in Theorem 9. Consequently by induction on index k in
Equation (71), we obtain that

vk = T kv0 + �4(T k + T k−1 + · · · + T )

(
Ax Ay − �x2�y2

�2

)
v0 (72)

We first prove the following two theorems.

Theorem 9
‖T ‖/(1 − ‖T ‖) ≈ O(1/�) on grid Equation (4) when (
hx/2)	1 and (
hy/2)	1.

Proof
In the beginning we show that

‖(E + �2Ax )
−1‖<

(
1 + �

8

h2x
sin2

(

hx
2

))−1/2

(73)

We have Equation (32) for the norm, namely

‖(E + �2Ax )
−1‖2 = max

� �=0
�∈�

((E + �2Ax )
−1�, (E + �2Ax )

−1�)

(�, �)
(74)

Let us introduce a new grid function

�= (E + �2Ax )
−1�

where we can pose the same boundary conditions Equation (24) for � such that �∈ �. Then
Equation (74) can be rewritten as

‖(E + �2Ax )
−1‖2 = max

� �=0
� ∈ �

(�,�)

((E + �2Ax )�, (E + �2Ax )�)

=
⎛
⎝min

� �=0
� ∈ �

[
1 + 2�2

(−(1/�)�x2�, �)

(�, �)
+ 2�2

(Bx�, �)

(�, �)
+ �4

(Ax�, Ax�)

(�, �)

]⎞⎠
−1

<

⎛
⎝min

� �=0
� ∈ �

[
1 + 2�2

(−(1/�)�x2�, �)

(�, �)

]⎞⎠
−1

= 1

1 + 2�((4/h2x ) sin
2(
hx/2))

(75)
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because the smallest eigenvalue of matrix −�x2 defined on the rectangular region D̄ is equal to
(4/h2x ) sin

2(
hx/2). We make use of notations Equations (51), (52) to get

(Bx�,�) = − Re

2
(Cn+(1/2)

x �, �) + 1

2
(�x4�, �) = 0 + 1

2
(�x4�, �)>0

When (
hx/2)	1, we have (4/h2x ) sin
2(
hx/2) ≈ 
2 and then approximately

‖(E + �2Ax )
−1‖<

(
1

1 + 2
2�

)1/2

(76)

Similarly, we can show that when (
hy/2)	1, approximately we have

‖(E + �2Ay)
−1‖<

(
1

1 + 2
2�

)1/2

(77)

Then

‖T ‖�‖(E + �2Ay)
−1‖ ‖(E + �2Ay)

−1‖< 1

1 + 2
2�
<1 (78)

Therefore,

‖T ‖
1 − ‖T ‖ = 1

(1/‖T ‖) − 1
<

1

((1/1 + 2
2�))−1 − 1
= 1

2
2�
(79)

�

Theorem 10
If the solution of problem Equation (1) with boundary conditions Equation (2) and initial condition
Equation (3) is sufficiently smooth on D × [0, T ], then ‖(Ax Ay − (�x2�y2/�

2)v0‖ = O(1).

Proof
Since the analytic solution � is assumed to be sufficiently smooth and (Ax Ay − (�x2�y2/�

2))v0

is given by Equation (60), then we can have:(
Ax Ay − 1

�2
�x2�y2

)
v0 = �

(
Re

2
Cn+(1/2)
x − 1

2
�x4

)(
Re

2
Cn+(1/2)
y − 1

2
�y4

)(
�n+1 − �n

�

)

−�x2

(
Re

2
Cn+(1/2)
y − 1

2
�y4

)(
�n+1 − �n

�

)

−�y2

(
Re

2
Cn+(1/2)
x − 1

2
�x4

)(
�n+1 − �n

�

)

= 1

2

[
1

2
�

(
−Re

���

�y
�
�x

− �4

�x4

)(
Re

���

�x
�
�y

− �4

�y4

)

− �2

�x2

(
Re

���

�x
�
�y

− �4

�y4

)
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− �2

�y2

(
−Re

���

�y
�
�x

− �4

�x4

)]
��

�t

∣∣∣∣
x=ihx ,y= jhy ,t=(n+(1/2))�

+ O(h2x + h2y + �2) = O(1) (80)

since the above derivatives are bounded in the compact domain D × [0, T ] under the assumption
that the solution � is sufficiently smooth. �

Making use of Theorems 9 and 10, we show that the following estimate holds for vk from
Equation (72):

‖vk‖�‖T ‖k‖v0‖ + �4
( ‖T ‖
1 − ‖T ‖

)∥∥∥∥
(
Ax Ay − �x2�y2

�2

)
v0
∥∥∥∥ = O(�3) (81)

for sufficiently large k.
Note that through out the proof, the grid functions v0 and �n are taken at the point for

i = 1, . . . , M − 1 and j = 1, . . . , N − 1, i.e. the following notation is implicit:

v0, �n|x=ihx ,y= jhy ,t=n�

Now we can return to (81) and complete the proof about the consistency of the scheme by noting
that since for large k one has ‖T ‖k	1, then one can always find large enough (but reasonably
large) k so that ‖T ‖k��2 which makes the term ‖T ‖kv0∼O(�3). This proves the consistency of
the scheme in full time steps (physical time). Since this is a very rough estimate, the practical
consistency is achieved for much lesser k.

8. COMPUTATIONAL EFFECTIVENESS

Theorem 9 gives us a rough but useful estimate of the upper-bound of the norm ‖T ‖ so that we
can assess the maximal number of the internal iterations required for each full time step (physical
time). First we notice that the function f (x)= (1 + (1/x))x is a strictly increasing function on
the interval x ∈ (0,∞) and f (2)>2. Let K ∗ = 1/2
2� and we assume that K ∗�2 for a certain
sufficiently small �. By Equation (78) and the definition of K ∗, we have

‖T ‖k< 1

[(1 + (1/K ∗))K ∗]k/K ∗ � 1

[ f (2)]k/K ∗ <
1

2k/K ∗ ��2 (82)

The last inequality is sufficient to derive the upper-bound K0 of the internal iteration number k
needed in each physical time step. Then it is easy to show that

− ln �


2� ln 2
�K0�

− ln �


2� ln 2
+ 1 (83)

where K0 is an integer. If � is not very small such that K ∗<2, obviously by Equation (78) we will
have smaller ‖T ‖ which gives even faster convergence so that lesser number of internal iterations
is needed. Actually it will be just one internal iteration in such a case.

Now we are ready to analyse the computational complexity of our scheme. Since our scheme
Equation (21) is absolutely stable, we have the freedom in the choice of �. It is easy to see
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that �∼max(hx , hy) = 1/min{M, N } is a reasonable choice in implementing our scheme which is
second-order accurate both in time and space variables. Without loss of generality, we let M�N
and then � = 1/M . By Equation (83), we have

K0 ≈ M lnM


2 ln 2

In each internal iteration, we only need to invert five-diagonal matrices according to the splitting
scheme Equation (62) where it takes about 30(M − 1)(N − 1) calculations by using the Gaussian
elimination method. Therefore, the total calculations Ctotal of K0 internal iterations for one physical
time step are

Ctotal ≈ 30(M − 1)(N − 1)M lnM


2 ln 2
∼O(NM2 lnM) (84)

which is much less than the total calculations O([(M − 1)(N − 1)]2) needed in inverting directly
the (M − 1)(N − 1) by (M − 1)(N − 1) full matrix (−�h + (�/2)B) for the difference equations
Equation (21).

Here is to be mentioned that recently we have succeeded to accelerated the rate of convergence
of the iterative splitting procedures for bi-harmonic operators in References [30, 31] up to five to
nine times over the standard rate. Applying one of the procedures developed in those works gives
additional edge to the algorithm presented here.

9. FEATURING EXAMPLE

As a featuring example for the scheme proposed here we choose the lid-driven cavity flow as one
of the most studied benchmark problems. Since the focus of the present work is on the unsteady
aspect of the problem, we consider (see Reference [32]) the flow in a square cavity created by
the oscillatory motion of the upper lid in its own plane. The motion of the lid is described by its
horizontal velocity U cos(�t) where � is the frequency. Then the time can be made dimensionless
by �−1 and the dimensionless the N–S equations read

�
���

�t
+ Re

(
��

�y
���

�x
− ��

�x
���

�y

)
− �2�= 0 (85)

where Re=UL/� is the Reynolds number, and � = �L2/� is the dimensionless frequency
parameter. Respectively, the boundary conditions and initial condition are in the same form as
Equations (2) and (3) with g(x, t) = cos t . This is discontinuous b.c. for the velocity and the
implication of this fact has already been discussed in the end of Section 4.

To demonstrate the performance of the new algorithm, we chose the frequency parameter and
the Reynolds number to be of the same order which results into a stronger interaction between
the viscous and inertial effects making the flow harder to treat numerically. To be specific, we set
Re= �= 200 for the test calculations.
To verify the second order of approximation in space, we consider the solution obtained on grid

160× 160 as the ‘exact’ solution and compute the L1 norm of the difference between the ‘exact’
solution and the solution on two different coarser grids. Table I presents the result.

In order to verify the second-order approximation in time, we set M = N = 160 and use three
different numbers of time steps within a period. Then for the time increment we have, respectively,
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Table I. Verification of the order of spatial approximation (different
norms for the error).

Grid size L∞(imax, jmax) L1 L2

40 × 40 2.262E-3 (2, 39) 2.556E-4 4.645E-4
80 × 80 6.777E-4 (2, 79) 5.904E-5 1.062E-4

Ratio 3.3378 4.392 4.3738

Table II. Distance from the reference solution with
� = 2
/400 for two different time increments.

Time increment L∞ L2

�= 2
/100 0.0468 0.0152
�= 2
/200 0.01206 0.0042

Ratio 3.881 3.619
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Figure 1. Streamlines of the solution for � = Re= 200, � = 2
/400, and 160×160 grid:
(a) t = 2
; and (b) steady streaming.

�=2
/100, 2
/200, and 2
/400. Considering the solution with the smallest time increment as the
reference (‘exact’) solution, we compute the maximum over one time period of the L∞ and L2
norms of the difference between the two other solutions and the reference solution. Table II shows
that the ratio is close to 4 which means that the order of approximation in time of the scheme is
two.

Having an efficient algorithm at one’s disposal, one can compute different characteristics of
the flow. Since we consider an example of a flow with harmonic oscillations of the boundary, we
time stepped the solution until ‘convergence’ between two consecutive periods is reached in the
sense that the solution over the (k + 1)th period virtually coincides with the solution over the kth
period. Then we compute the functions over one more period beginning with the initial condition
that secures the periodicity of the solution. Figure 1(a) gives a snapshot of the stream function
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at the end of a complete period of time. Unlike the steady flow in lid-driven cavity for moderate
Reynolds numbers, the unsteady flow consists of two counterrotating (but not symmetric) vortices
over the bigger part of the period. We cannot present more detailed investigation of the physical
characteristics of the flow here because of the size of the paper and because the present paper is
mostly concerned with the development of the algorithm itself.

Another important characteristic of the pulsatile flow is that it has a steady part despite the fact
that the boundary condition has strictly oscillatory behaviour with zero mean motion. The steady
streaming in oscillatory lows is a well recognized phenomenon that arises due to nonlinearity (see
Reference [32] for this particular flow). When computing the last period, we integrate the solution
in time for each spatial point and thus we obtain the steady streaming. Figure 1(b), shows our
result for the steady streaming. It is in very good quantitative agreement with Reference [32]. The
steady flow is symmetric with respect the vertical middle line and exhibits two different vortices.
We have computed the flow for �= Re= 400 and in agreement with Reference [32] four different
vortices appear for the steady flow.

The results of this section validate the proposed algorithm. The algorithm has already been
applied in Reference [33] to a more complicated physical problem involving natural convection in
vertical slots, and showed reliable performance.

10. CONCLUSIONS

In the present paper, we consider a new scheme for the unsteady Navier–Stokes equations in
terms of stream function. We construct an implicit time-stepping scheme and derive the fourth-
order elliptic equation for the grid stream function at certain given time stage. We show that this
higher-order elliptic problem can be effectively solved numerically by adding an artificial time and
constructing of an economical implicit splitting scheme for the artificial parabolic problem.

We propose a special way to approximate the nonlinear advective terms and show that the
respective difference operators are antisymmetric (nondissipative). The latter means that there is
no second-order artificial viscosity in the scheme. The special treatment of the nonlinear terms
allows us to prove that the scheme for the ‘full time’ steps is absolutely stable and it is of
second-order of approximation both in time and space.

The iterative splitting scheme for time-stepping with the artificial time is thoroughly investigated
and several important properties are proved, such as absolute stability with respect to the increment
of the artificial time. This achievement is possible because we were able to make the approximation
of the mixed fourth spatial derivative fully implicit. On the basis of judicious choice of the artificial
time increment we prove that the implicit approximation in the internal iteration does not deteriorate
the second-order of approximation of the original scheme for the physical time. As a result, a fully
implicit unconditionally stable iterative scheme is constructed for the unsteady stream function
equation.

The computational effectiveness of the scheme is investigated and it is proved that the number
of operations needed to complete a single step of the physical time is O(NM2 lnM) where M
and N are the numbers of grid points in the two spatial directions and M stands for the smaller
of them.

A featuring example is elaborated and the practical convergence of the scheme is shown to
follow the theoretical predictions.
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