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ABSTRACT

We study pattern formation and selection in Rayleigh-Bénard systems confined between well conducting horizontal boundaries and
subjected to a weak horizontal gradient of the Rayleigh number. The study is based on the numerical integration of the Swift-Hohenberg
equation and addresses the questions of the preferred orientation of the patterns with respect to the gradient of the Rayleigh number,
boundary effects observed at subcritial sidewalls, the characteristics of long-term evolution of the patterns with emphasis on the wa-
velength selection, and the effect of non-potential modifications of the Swift-Hohenberg equation.

It is shown that, contrary to common belief, the rolls do not align with the direction of the horizontal temperature gradient
(Dewel, 1989; Malomed, 1993), due to the influence of the walls. Rather, rolls approach a sidewall perpendicularly when the lo-
cal bifurcation parameter is sufficiently beyond the threshold but tend to be parallel to a subcritical or critical sidewall. Simulati-
ons performed with non-potential modifications of the Swift-Hohenberg equation lead in most cases, to asymptotic time-dependent
behaviours.
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1 INTRODUCTION

The problem of thermal convection in a thin layer of fluid hea-
ted from below has been widely studied in the last hundred years.
Atter Bénard's experiment and the theoretical explanation propo-
sed by Lord Rayleigh, the works released during the first part of
the 20™ century were dedicated to understanding why and when
atransition from the homogeneous to the structured state occurs.
Details and reviews on the results obtained in this phase are found
for instance, in the works of Chandrasekhar (1961) and Normand
gt al. (1977). The following step, concerning the saturation me-
chanism of the instability, goes back to the work of Landau (1944),
who added a nonlinear term to the original equation, to cope with
the nonlinear satruration beyond the critical point. A review of
the underlying saturation mechanism can be found in the work by
Velarde et al. (1980). The problem of pattern selection and stabi-
lity in Rayleigh-Bénard convection has been extensively studied
in the last fifty years and these studies have been closely linked to
the development of nonlinear methods. Of particular importance
are the works of Swift and Hohenberg (1977), who obtained an
equation for an order parameter-like, which describes the evolu-
tion of complex patterns in extended systems.

In this work (Peaceman and Rachford Jr. 1955) we analyze a
problem that has received less attention: the problem of pattern
formation and selection in non-uniformly forced systems. Among
the existing literature on the subject, we may cite the work of
Kelly and Pall (1976), who derived the form of the base state of
the problem, the experimental work of Srulijes (1979) and two ar-
ticles by Walton (1982, 1983). The first one, is devoted to the
derivation of the (1 + 1) D amplitude equation for a structure of
rolls and also, to finding a solution that asymptotically matches
the system behaviour in the supercritical region and that decays
in the subcritical region. The second one deals with the preferred
orientation of rolls close to a subcritical wall. We may also cite the
work of Dewel et al. (1989), concerning the orientation of rolls in
ramped systems.

We consider a Boussinesq fluid confined between insulating
rigid sidewalls and good conducting horizontal boundaries, sub-
mitted to a weak gradient of temperature in the lower surface. Pat-
terns formed under these conditions result from the competition
between four major effects: the bias introduced by the initial con-
dition, the system size, bulk and boundary effects. Initial conditi-
ons are rarely uniform, due to external perturbations to which the
system is always submitted. For instance, random initial conditi-
ons induce the growth of modes with different orientation, during
early stages of formation of the structure (Greenside 1984; Man-

neville 1990). Some modes tend to dominate all others in limi-
ted regions, while the structure evolves towards the steady state.
When nonlinear effects saturate the growth, a structure with re-
gions or domains often emerges (Manneville and Pomeau 1983;
Malomed et al. 1990), provided that the system is large enough.
By “large” we mean a system where the horizontal length L, mea-
sured in number of system heights, is large when compared with
the conerence lengih (& / /) (Manneville 1990), which is the
characteristic length in which the modulation occurs. Here, & is
the system length, measured in number of system thicknesses and
¢ is the supercriticality level.

Bulk effects tend to produce uniform structures with straight
parallel rolls (Cross 1982) and uniform amplitude. The existence
of a temperature gradient in the lower surface of the system deter-
mines a preferential direction for the structure, with rolls aligned
palallel to the gradient (Dewel et al. 1989; Malomed et al. 1993).

System boundaries introduce conflicting requirements, by re-
questing rolls to bend across the convection cell, in order to per-
pendicularly approach sidewalls (Cross 1982). Furthermore, the
amplitude must vanish at those walls (Brown and Stewarson 1977;
Wesfreid 1978). In the case of uniform and moderately forced
square systems, the interaction of these effects and the existence
of a long coherence length often lead to a pattern characterized
by a pair of focuses located in diagonally opposite corners. There
is a symmetry with respect to the diagonal (Fig. 1a). In the op-
posite case of strongly forced systems, short coherence lengths
lead to the “fusion” of the pattern (Walgraef 1997) and to labirynth
structures (Fig. 15).

Much less is known about subcritical boundary effects, since
they do not appear in uniformly forced systems. Indeed, sys-
tems forced with a horizontal gradient of the Rayleigh number
undergo an imperfect bifurcation (Walton 1982) that allows for
a weak structure in the suberitical region and we can argue whe-
ather boundary effects are similar as in uniformly forced systems.
Walton (1983) was the first to adress the problem. He assumed a
ramped system in which the Rayleigh number attains its maximum
at a sidewall and considered the relative stability of parallel and
perpendicular rolls to that wall. Two cases were identified: if the
wall temperature is sufficiently above the critical point, rolls per-
pendicular to the wall prevail. In the opposite case, where the wall
was still subcritical or even slightly supercritical, parallel rolls to
the wall appear, induced by the non-trivial base state. The exis-
tence of this subcritical structure had already been experimentally
identified by Srulijes (1979) and Kirchartz (1983) and also decte-
ted in numerical simulations conducted by De Wit (1993) in the
framework of a model for chemical systems.
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Figure 1 — Patterns obtained in uniformly forced systems, by integration of the Swift-Hohenberg equation in square boxes, with rigid boundary conditions,
u = du/dn = 0, and starting from random initial conditions. («): a structure displaying five gra/nsin a 50 x 50 square, forced with ¢ = 0.25, and obtai-
ned at # = 85000. There is one grain perpendicular to each sidewall and one in the center of the system, which accounts for the transition between grains adjacent
to the walls. The numerical grid contains 202 points. (b): pattern obtained at # = 50000, with the same parameters, except the forcing applied to the system, which
isnow & = 0.5. The higher forcing results in a smaller co/erence /ength, which allows the system to develop a structure with higher density of defects. (c): pattern
obtained at # = 10000, in a 30 x 30 square, forced with ¢ = 0.5. Despite of the high forcing, the development of a more complex pattern, as found in (b), is

inhibited by the smaller system size. The numerical grid contains 122 points.

Several questions remained unanswered: Srulijes experi-
ments were conducted in a small system submitted to a strong
gradient of the Rayleigh number and Walton considered a sys-
tem subcritical in the bulk and unbounded in the direction of the
wall. Furthermore, the roll parallel to the subcritical wall found
by De Wit does not originate from a baroclinic motion. The fol-
lowing steps, devoted to further investigation of the origin of this
effect and to the interactions between subcritical and supercritical
patterns had not been accomplished to the present date.

The purpose of this work is to clarify some of these questi-
ons. The problem may be studied via two complimentary appro-
aches. The first one (Pontes 1994) is based on amplitude equa-
tions for a structure containing one, two or three modes with ar-
bitrary specified direction, generalizing Walton’s result. Expressi-
ons and numerical values of the coefficients have been computed
for some values of the Prandtl number, and numerical solutions
were obtained and analyzed for small horizontal Rayleigh number
gradients and a maximum of threg interacting modes. In this case,
two-dimensional simulations indicate that the system develops a
structure with three domains. The first one comprises the bulk of
the system, where the mode which best complies with the require-
ment of being parallel to the Rayleigh number gradient is the only
one to survive. The two other domains are parallel to the gradi-
ent boundary layers, where the mode which best fits the condition
of being perpendicular to the walls dominates. The third mode
decays everywhere in the system. In addition, we found a weak
structure of rolls parallel to the subcritical wall.
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These results not only suggest that domains may develop in
amped systems, but also, that more complex patterns may even-
tually appear, if the system is allowed to freely select the local
orientation of the wavevector. However, such an analysis would
require, in the framework of amplitudfe equations, that a PDE be
written for each possible mode, leading to an excesively large sy-
sem of equations. In order to overcome this dificulty, simplified
versions of the original hydrodynamic equations that preserve the
asymptotic properties of the dynamics and lead to the same am-
plitude equations obtained from the original evolution laws, have
been used to analyze uniformly forced systems. The most popular
one, obtained by projecting the Boussinesq equations on the cri-
tical modes of the system, assumed as a fluid with infinite Prandt]
number and confined between well conducting stress-free boun-
daries is the well-known Swift-Hohenberg equation (1977).

Hence, the second approach to the problem that we pre-
sent here is based on the study of such equations. In particular,
Section 2 is devoted to the study of pattern formation by numerical
integration of the Swift-Hohenberg equation adapted to spatially
ramped systems. Section 3 adresses the problem of subcritical
boundary effects in ramped systems. The numerical characteriza-
tion of the asymptotic time evolution of the patterns is dicussed
in Section 4, while the effect of localized forcings is illustrated in
Section 5. Wavelength selection is discussed in Section 6. Com-
parisons with other works and results obtained with generalizati-
ons of the Swift-Hohenberg equation are presented in Sections 7,
8 and 9. Section 10 summarizes the results and discusses open
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questions, while details of the numerical procedure may be found
in the appendix.

2 THE ANALYSIS THROUGH THE SWIFT-HOHENBERG
EQUATION
We study the following dynamical model which represents the
dynamics of a Rayleigh-Bénard system with a horizontal tempera-
ture gradient in the x-direction, in the case of a Boussinesq fluid
with infinite Prandtl number confined in a box with rigid side-
walls and good conducting horizontal boundaries.
ro%zsu—gu3—é4 <V2+Kg)2u 1)
Two variants of this model were also analyzed. The first one des-
cribes systems with mixed horizontal boundary conditions and
reads:

ou 3 n ou n ou
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The second one is the generalization to spatially ramped systems
of a model studied by Greenside and Coughram Jr. in the case of
horizontally uniform conditions, and reads:

d 2
roa—lt‘ = su+3|Vul> V2u — £* (v2+/<§) u (3

where 79 = 0.0509, g = 1.29 and £* = 0.015.

Here, we present first the results obtained by the numerical
integration of the Swift-Hohenberg equation in horizontally finite
systems, sufficiently large to allow the modulation of the struc-
ture. We tried to assess the influence of the system geometry
on the pattern selection process to distinguish between situati-
ons, where the whole system is under supercritical conditions
and situations, where the temperature gradient divides the sys-
tem into a subcritical and a supercritical region, and to com-
pare the results with those obtained in uniformly forced systems
(cf. Fig. 1). As a result, our numerical simulations may be classi-
fied in four groups:

1. Simulations in square geometries, starting from random
initial conditions, with the maximum of the bifurcation pa-
rameter set 10 emax = 0.5 and assigned to the right wall
of the system (x = L). The critical point was set to
x = LJ/2,x = 0and x = —L. The simulation of
systems uniformely forced were run with e = 0.25.

2. Same as in the previous case, but with enax = 1.0.
The simulation of systems uniformely forced were run
with ¢ = 0.50.

3. Simulations in rectangular geometries, starting from ran-
dom initial conditions, performed with a ramp de/dx =
0.1 and the critical pointin x = L/2,inx = 0 and in
x = —L /2. The simulation of systems uniformely forced
were run with e = 0.01.

4. Simulations of the Swift-Hohenberg with a quadratic
convective-like terminthe form v u (9u/dx + du/dy).

5. Simulations of the Swift-Hohenberg with a the cubic term
in the form 3 |Vu|? V2u.

A sketch of the numerical method may be found in the appen-
dix. An important question in this problem concerns the long
term evolution of the pattern, and the identification of whether the
system evolves towards, or has reached a steady state, or if the
asymptotic state is unsteady. One is thus faced with the prati-
cal problem of ascertaining when a pattern still evolves, if further
qualitative changes are likely to occur due to the possible
creation or anihilation of cells, to the climbing or gliding of dis-
locations, to the anihilation of entire grains, or rather, if we can,
with reasonable confidence, expect that only minor adjustments,
possibly in the phase of the pattern, would eventually occur. In
the latter case, the pattern may be considered at the steady state,
and the simulation process may be stopped. To do so, we have
chosen a convergence criterion which is sensitive not only to the
growth of the amplitude, but also to the evolution of the phase
(Pontes 1994). The decision of further proceeding with a simu-
lation or not is taken on monitoring the rate of change of the
distance between two successive system states. Furthermore, in
order to quantifie how “extended” a system is, we use a factor
F, defined by Eq. 4, which is the ratio between the aspect ratio
(the geometric “length” of the system) and the coherence length of
the pattern (the characteristic length in wich modulation occurs).

o L
RING

Here, L is the larger horizontal dimension of the system, expres-
sed in number of system thicknesses and £ = 0.015, is the
coefficient of the term &4 (V2 + «2)° u in the Swift-Hohenberg
equation. The term &/./e defines the conerence lengih (see
Table 1). The main results of the numerical simulations made
by numerical integration of the Swift-Hohenberg equation (Eq. 1)
are analyzed in the following sections.

(4)
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Table 1 — The factor F (Eq. 4) in uniformly forced systems.

squares F squares F rect. F

(e = 0.25) (e = 0.50) (e = 0.10)
20x20 | 286 || 20x20 | 404 20x10 | 181
30x30 | 429 || 30x30 | 606 20x30 | 271
40x40 | 571 40x40 | 808 20x50 | 45.2
50x50 | 714 | 50x50 | 101

3 THE SUBCRITICAL BOUNDARY EFFECT IN RAMPED
SYSTEMS

An inspection of the numerical results shown in Figs. 2, 3 and
4 reveals that except in a few cases, the ramped systems do not
develop a structure of rolls parallel to the gradient, a fact obser-
ved in Srulijes experiments conducted in small boxes, and in the
numerical integration of the amplitude equations performed by
Hoyle (1995). The aligning effect of the gradient is dominating
by the boundary effects. Nevertheless, ther is a qualitative dif-
ference between patterns formed in ramped systems and in uni-
formly forced systems: ramped systems, holding a subcritical re-
gion or, at least one sidewall where the bifurcation parameter does
not exceed the critical value, display patterns with oze single fo-
cus, usually located in the wall where the bifurcation parameter
attains the maximum, whereas uniformly and moderately forced
systems tend to develop a pa/r of focuses in the extremes of one
of the diagonals of the box. The difference can be better obser-
ved in Figs. 2 and 4, where the forcing applied to the systems
is sufficiently weak to induce the development of patterns with a
low density of defects. The reason for the qualitative difference
is a boundary effect that occurs close to critical or subcritical si-
dewall: the rolls tend to become parallel to these walls. The con-
sequence of this effect in square or rectangular systems is that if
rolls are parallel to one of the walls they are automatically per-
pendicular to the adjacent walls, and a focus is no longer requi-
red, because the system is not requested to develop rolls perpen-
dicullar to all sidewalls. The resulting pattern contains a lower
density of defects than those obtained in uniformly forced sys-
tems. We observed this effect irrespectively of the direction of the
rolls in the supercritical region, the system geometry, the ramp
configuration and the type of initial conditions.

Furthermore, this effect still appears in systems with a slightly
supercritical sidewall, for instance, in the simulations of rectan-
gular systems forced with a ramp 0.1 < & < 0.3. The second
focus gradually returns as the whole system becomes supercri-
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tical. Figure 5 illustrates the effect, with three patterns obtained
in systems containing a subcritical region. In each we case we
show, on the left, an image of the pattern constructed with a linear
scale of grays, and, on the right, an image of the same pattern
constructed with a scale that enhances the weak structure existing
in the subcritical region. In (a), we show the structure develo-
ped ina 20 x 20 square forced witharamp —1 < ¢ < 1
along the x-direction, and starting from random iitial conditions.
The right image shows the rolls parallel to the subcritical sidewall.
In (b), we show the pattern obtained in the same geometry, forced
with a ramp —0.5 < ¢ < 0.5 and starting from a structure of
critical rolls parallel to grad «. The amplitude of the initial con-
dition is 4 = 0 in the subcritical region, and 4 = /e/g in
the supercritical region. Despite of the initial condition and of
the orientation of the supercritcal structure, the rolls bend and
become parallel to the subcritcal sidewall. In (c¢), we show the
pattern obtained in a 20 x 50 rectangle forced with a ramp
—0.1 < ¢ < 0.1 starting from random initial conditions. The
subcritical boundary effect is clearly present also in this case.

Figures 2, 3 and 4 show that in a very few cases the system
develops astructure of rolls parallel to the ramp. An analysis of the
time-evolution of one of these cases, shown in Fig. 6, suggests
that even in this case, the asymptotic state is strongly influenced
by the subcritical boundary effect: the system initially develops
a focus that stands between ¢ ~ 150 and ¢+ ~ 1000. After
that, the focus slowly moves to the subcritical region and disape-
ars at ¢ ~ 3000. The structure aligns with the ramp. The same
time-evolution is shown again in Fig. 7, where the images were
constructed with a nonlinear scale of grays, in order to enhance
the subcritical structure. This sequence clearly reveals that the
focus initially formed in the upper right corner leads to rolls per-
pendicular to the subcritical wall. This solution is replaced by
another one, consisting of rolls parallel to the gradient that bend
in the subcritical region, better matching the requirement of being
parallel to a subcritical wall.
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Figure 2 — Patterns obtained by integration of the Swift-Hohenberg equation in square boxes, with rigid boundary conditions, « = du/0n = 0, and starting
from random initial conditions. The three first columns from left to right show patterns developed in spatially ramped systems, in which the bifurcation parameter
& varies along the x-direction. Patterns in the right column refer to uniformly forced systems. The diagrams in the top of the figure show the forcing applied to
the systems in each column, with the dependece of & on x. This figure shows that uniformly forced systems submitted to a moderate forcing tend to develop
patterns containing a pair of focuses located in the extremes of one of the diagonals of the box, and with rolls approching the sidewalls perpendicularly. Systems
with a critical or a subcritical wall tend to develop qualitatively different patterns, with a single focus, and rolls paza//e/to that wall. This effect is clearly observed
in the two first left columns. The second focus reappears when the whole system becomes supercritical, as shown by patterns in the third column from left to
right. The first line of images displys patterns obtained in 20 x 20 boxes with grids containing 82 x 82 points. The second line refers to simulations performed
in30 x 30 boxes with grids of 122 x 122 points. The third line refers to 40 x 40 boxes and grids of 162 x 162 points and the last line refers to 50 x 50
boxes and grids of 202 x 202 points. All images were obtained at the end of the simulation, when the rate of evolution, L, presented an exponential decay.
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Figure 3 — Patterns obtained by integration of the Swift-Hohenberg equation under the same conditions indicated in Figure 2, except the forcing applied to the system,
which is stronger than in the previous figure. The diagrams in the top of the figure show the forcing applied to the systems in each column, with the dependece of & on
x. These forcings lead to shorter coherence lengths and to patterns with higher density of defects. The tendency of uniformly forced systems to develop patterns with a
pair of focuses in the extremes of one of the diagonals of the box appears less clearly than in Figure 2, particularly in the largest boxes. Nevertheless, the tendency of
the rolls to become parallel to critical or subcritical sidewalls persists. All images refer to the system state at the end of the simulation, when the rate of evolution, L

presented an exponential decay.
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Figure 4 — Patterns obtained by integration of the Swift-Hohenberg equation in 20 x 10, 20 x 30 and 20 x 50 boxes, with square grids containing, respecti-
vely, 82 x 42, 82 x 122, and 82 x 202 points. The simulations were done starting from random initial conditions and boundary conditions were assumed as
u = du/on = 0. The diagrams in the top of the figure show the forcing applied to the systems in each column, with the dependece of & with x.
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Figure 5 — The tendency of rolls to align in parallel to a subcritical sidewall. Three patterns, (a), (b) and (c), are shown with different contrasts;
the left images are made with a linear scale of grays and the right ones are made with a hyperbolic tangent scale, in order to enhance the weak
subcritical structure. (a): pattern obtained in a 20 x 20 square box forced with aramp —1 < ¢ < 1, along the x-direction, and starting
from random initial conditions. (b): pattern obtained in the same geometry, with aramp —0.5 < ¢ < 0.5, along the x-direction, starting from
initial conditions consisting a structure of rolls critical wavelength of parallel to grad . The amplitude of the initial condition is 4 = 0 for
0<x<L/2and 4 = /e/gfor L/2 < x < L.(c): pattern obtained in aa 20 x 50 box, forced with a ramp —0.1 < & < 0.1 along the
x-direction, and starting from random initial conditions. In all cases the rolls bend and tend to align in parallel to the subcritical sidewall.

4 SATURATION, PHASE DYNAMICS AND STEADY
STATES

A question concerning the numerical procedure is the problem
of distinguishing when we could consider a simulation as con-
cluded. A review of the literature shows that in cases where the
system evolves towards a steady state, criteria based in the satu-
ration of the growth of the amplitude, or on the rate of change
of the associated Lyapunov potential, when it exists, are often
used to decide when to stop a simulation (Greenside, 1984),
(Manneville, 1990). However, the evolution of a pattern results
both from the effects of the saturation of the growth of the
amplituae and from the phase aynamics, and these criteria are
not sensitive to the evolution of the phase. The phase evolves
much slower than the amplitude due, for instance, to the motion
of the pattern in search of a steady state, to the dilatation or to
the compression of the pattern (Eckhaus instability). In many ca-
ses, it happens that after a long and slow evolution, the process
accelerates and ends by a gualitative change in the pattern, which
we were interested in.

We followed the time evolution of patterns by monitoring the
rate of change of a norm that measures the aisiance between two
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successive states of the system. This figure, which we call L,
and denote by “norm”, is sensitive to the evolution of both the
amplitude and the phase. The norm is (Christov et al., 1995),
(Pontes et al., 1995):

1 2, W;rl - ”;11|
At Y un+1]
where the sums are made over the i and j points of the spatial
grid.

An example on how this norm captures important features of
the evlution of a pattern is given in Fig. 8. A focus initially formed
in the right sidewall becomes unstable to a front that propaga-
tes from a new focus that appears close to the upper right corner.
The phenomena is precisely refleced by the peak displayed in the
L1 x tcurve.

Another example is given in Figure 9. This figure shows the
time-evolution of the pattern developed in the 50 x 50 square,
forced with a ramp (0 < & < 0.5) along the x-direction.
A focus that initially penetrates from the right sidewall is forced
backward. The focus disapears in ¢ ~ 160000 and gives place
to a new focus. The grain existing near the lower sidewall is eli-
minated between ¢ = 175000 and ¢+ = 180000. After that,

(%)
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Figure 6 — Evolution of a 20 x 40 system, forced with a ramp —0.1 < & < 0.1 along the x-direction, and starting from random initial conditions, towards
a structure of rolls parallel to gradw: a focus formed in the upper right cormner (z = 150) moves to the left and finally disapears in the subcritical region, at

t =~ 150. The final structure is parallel to the ramp (see also Fig. 7).

the system develops a small grain with rolls parallels to grad ¢,
close to the upper right corner. The collapse of the first focus and
of the grain near the lower sidewall is captured by the peaks of the
Ly x ¢, showninFig. 10-17 (curve b).

Figure 10 shows the L; x ¢ curves associated to the
gvolution of patterns obtained in the 40 x 40 and 50 x 50
squares. The curves indicate that the evolution comprises a first
phase characterized by a rapid decay of the norm, indicating

saturation of the pattern. Several peaks are observed, associa-
ted to the elimination of defects. This phase is followed by a se-
cond one, often long, in which the norm does not exibit a sus-
tained decay. Peaks are less frequent, or do not even appear, in-
dicating that changes are mostly quantitative. The pattern moves
slowly, i.e. the phase evolves in search of the stady state. The
evolution eventually ends by a sustained exponential decay of the
norm. All simulations of Eq. (1) presented this last stage, with
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Figure 7 — Evolution of the same pattern shown in Fig. 7, with images constructed with a hyperbolic tangent scale of grays in order to enhance the
subcritical structure. This figure shows that the structure aligns in parallel with the shorter sidewall due to the subcritical boundary effect, and not to
the geometry or the bulk aligning effect of the ramp: the requirement of rolls parallel to the left sidewall is better fulfilled by the pattern displayed at

¢t = 3000 than by the one formed at z = 150.

an exponential decay. At that point we stopped the integration,
and considered that the system found a steady state.

5 OTHERFORCINGS AND A PATTERN CLASSIFICATION
ACCORDING TO THE DENSITY OF DEFECTS

Having identified the subcritical effect responsible for rendering

the rolls parallel to a subcritical wall, we asked ourselves what

type of structure would the system develop if all walls were kept

Journal of Computational Interdisciplinary Sciences, Vol. 1(1), 2008

in suberitical conditions. In order to answer the question, we si-
mulated a system in a 20 x 20 square, forced with a gaussian
distribution of the bifurcation parameter, with the maximum in the
center of the system, according to:

e(x,y) = 0.8~ FT0/05 _ 5 (6)

Here, the length of the square wall was setto L = 2r and the
coordinates of rg are (x = r, y = r). The evolution shown
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Figure 8 — The instability of a focus in a 20 x 50 rectangle, forced with a ramp (0 < & < 0.2) along the x-
direction. A focus, initially formed at the right sidewall, (¢ = 500) becomes unstable to a front that rapidly propagates
in ¢t == 3600, from a new focus that appears close to the upper right corner. The rapid propagation of the front is
precisely captured by the curve of the rate of evolution as a function of time. The simulation was performed in a grid
with 82 x 202 points and assuming rigid boundary conditions, u = du/dn = 0 at the sidewalls.

in Fig. 11 shows that the pattern initially orientates in parallel to
one of the diagonals and then rotates under the influence of the
subcritical effect, to become parallel to one of the walls. But if
the rolls become parallel to a subcritical or slightly supercritical
wall, the system does not develop a pattern parallel to all subcriti-
cal walls. The pattern effectively becomes parallel to two opposite
walls but no special requirement seems to exist with respect to
the other walls. Our simulations suggest that boundary subcritical
effects are less restrictive than supercritical effects. Consequen-
tly, the resulting pattern exhibits a much lower density of defects
than those formed in uniformly forced systems.

In fact, extended systems uniformly forced are either weakly
forced and the pattern approaches the sidewalls perpendicularly,
or strongly forced and this boundary requirement is no longer

strictly observed. In the first case, the defects appear to match
domains with different orientations defined by sidewalls. In the
second case, a stronger constraint induces the melting of the
structure (Walgraef 1997) by increasing of the defect density. Our
results suggest that a new class of patterns, characterized by a
much lower density of defects, might possibly be obtained by me-
ans of non-uniform forcings, when the boundaries are mantained
at subcritical condition. Figure 12 illustrates different levels of
defects obtained with the same random initial condition, but with
different forcings.

6 WAVELENGTH SELECTION

An important question concerning the analysis of a pattern is
the identification of the selected wavelength and of the spectral
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Figure 9 — The long time evolution of the pattern developed in the 50 x 50 square, forced with a ramp (0 < & < 0.5) along the x-direction
(config. # 14). A focus that initially penetrates from the right sidewall is forced backward. The focus disapears at ¢ ~ 160000 and gives place
to a new focus. The grain existing near the lower sidewall is eliminated between = 175000 and ¢ = 180000. After that, the system develops
a small grain with rolls parallels to grad ¢, close to the upper right corer.

content of the pattern, interms of Fourier modes. Figure 13 shows
a stationary pattern and the inner part of the associated ampli-
tude spectra of Fourier modes (), which shows that the relevant
modes fall in a cicular ring.

In order to identify the relative importance of the amplitude
of the modes, irrespective of their orientation, we computed the
sum of the amplitudes found in circular rings of the Fourier
transform, centered at « = 0 and limited by

Ak

Ak
nAxk — — <k <nlAk + —,
2 2

where,
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2w

Ak = T

We denote the number obtained by 4. The values of 4 ob-

tained accordingly were normalized by max(4) and plotted in
Fig. 2(g), as a function of « /«..

The result is shown in Fig. 13(c). The curve displays an
absolute maximum in «/x. = 1.04, which we define as
K r/ke, With «k ¢ being the Zunaamenta/ wavenumber of the pat-
tern. Consequently, we conclude that the fundamental wave/engih
of the pattern is, in this case, sligthly smaller than the critical
wavelength. Similar results were obtained by applying the same
procedure to other patterns.

and n=1,2,....
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Figure 10 — The rate of evolution (L x ¢) curves associated to the 40 x 40 (1), and 50 x 50 (/7)) squares shown in Fig. 2 and to the 40 x 40 (/17), and
50 x 50 (1 V) squares shown in Fig. 3. The curves labelled a, b and ¢ refer to systems forced with a ramp of & and d, to uniformly forced systems. Curves identified
by a refer to ramped systems in which the critical point is located in x = L/2,binx = 0, cinx = —L and d, to uniformly forced systems. L is the length of
the sidewall. These curves show that system evolution comprises three stages: In the first one, the L norm rapidly decays and displays sharp peaks, in the second
stage, the phase of the pattern evolves and in the last one the rate of evolution presents an exponential decay.
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Figure 11 — Evolution of a pattern in 20 x 20 system, forced with a gaussian distribution of the bifurcation parameter, according to e(x,y) =
0.8 exp(—2(r — rg)z) — 0.5. The length of each sidewall is L = 2r and the cordinates of ry are x = » and y = r. The numerical grid contains
82 x 82 points. The tendency of the rolls to align with the subcritical sidewalls appears again in this case.
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Figure 12 — Four levels of defects in 40 x 40 systems. (a): system forced with a ramp 0.5 < ¢ < 1, along the x-direction. The strong forcing leads to
a high density of defects. (b): system moderately and uniformly forced (¢ = 0.25), displaying a pattern characterized by a pair of focuses in the extremes of
a diagonal. (c): moderately forced system, with a ramp 0. < & < 0.5, along the x-direction. The pattern contains a single focus. (d): on-uniformly forced
system, with /boundaries in subcritical conditions; the boundary effects, which are less restrictive than with supercritical sidewalls, lead to the lowest density

of defects. All patterns were obtained from the same random initial condition.

7 COMPARISON TO OTHER WORKS

Our numerical work includes the simulation of uniformly for-
ced systems, conducted with the twofold purpose of identifying
differences with respect to patterns formed in ramped systems,
and comparing the results with existing data, in particular with
those found in the classical paper of Greenside and Coughram Jr.
(1984). The model equations integrated in this work and by the
above authors are:

9
0.0509 a—‘t‘ = su— 1.294° — 0.015(V? +3.1172%)u
(This work)

3_“_ 3 (2 2
8t_8u u (V+1)u

(Greenside and Coughram Jr.)

Journal of Computational Interdisciplinary Sciences, Vol. 1(1), 2008

A comparison of our results to those obtained by Greenside
and Coughram Jr. reveals good qualitative agreement between the
patterns obtained in both works. In one particular case the sys-
tem dimensions and the forcing adopted are pratically the same,
allowing a direct comparison of the quantitative results, as shown
in Table 2. May we stress the differences in the parameters adop-
ted in the two works: our simulations were performed with a grid
of aproximately 8 points per wavelength, whereas these authors
adopted 12 points per wavelength; the random initial conditions
are different; furthermore, we adopted a smaller coefficient in the
term containing the space derivatives, that results in shorter cohe-
rence lengths; to conclude, the criteria used to identify steady
states are different: these authors used the rate of change of the
associated Lyapunov potential and we used the L norm, which
is more restrictive. The differences in the aspect ratio and in the
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Figure 13 — The spectral content of the pattern (a), displayed in a 20 x 50 box, forced with a ramp 0

x-direction. (b) the Fourier transform of the pattern shown in (a). (c): wavenumbers existing in the pattern. 4 is the summ of

amplitudes in all directions, associated to wavenumbers comprised between « and « + Ax, where A« is the mesh of the discrete

1.04 defines the fundamental mode of

Fourier transform. This number is plotted as a function of « /«.. The peak, located in « /x¢

ical.

i

the pattern, « #, which is slightly larger than the cri

20 x 30 rectangle

(

Table 2 — Comparison between data and results concerning one of the simulations presented herein

forced with e = 0.1) and a similar simulation performed by Greenside and Coughram Jr. (1984).

Ly and L are the

system length and width, expressed in number of critical rolls; F is the ratio between the geometric aspect ratio of the box

and the conerence fength of the pattern (Eq. 4); n, and n,, are the number of points of the spatial grid along the x and the

y directions; /meshis the approximate number of points per wavelength of the grid adopted in the simulations.
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8 THE SWIFT-HOHENBERG MODEL WITH

criteria adopted to conclude a simulation explain the relaxation

QUADRATIC TERMS

8 times

t

which is almos

higher than the value presented by these authors.

time ¢, /7o obtained in our simulation

To our knowledge no results have been published concer-
ning numerical simulations of the ramped Swift-Hohenberg mo-

del. Common points with the theoretical work of Walton (1983

It can be shown that the amplitude equations of a hexagonal struc-

d convection

énar

B

include quadratic convective-like terms, and this result suggests

that a modification could be made in the Swift-Hohenberg mo-

ture developed in spatially ramped Rayleigh

)

and Dewel etal. (1993), and with the experimental work of Srulijes

(1979) have already been discussed above.

del to include similar terms. Based on that we performed some
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numerical simulations of the model, in the form:

) % = eutvu (g—z + g—z> —gu3—“§4(V2+k(2))2u
The boundary conditions and the numerical values adopted for
the coefficients are the same as previously used. We considered
ramped systems with 0 < ¢ < 0.5 along the x direction and
uniform forcing, with ¢ = 0.25. The coefficient v was set to
15,2.2,2.5,35and5.0. The results are summarized in Fig. 14.
At v = 1.5 and uniform forcing we obtained a stationary pat-
tern of straight rolls, parallel to one diagonal. By forcing the sys-
tem with a ramp of ¢, stationary patterns were no longer obtained:
at low values of v rolls move in the sense opposite to grad ¢.
The norm L displays a periodic behaviour. By increasing v the
pattern undergoes a transition to a structure of squares and the
norm is longer periodic. Finally, the whole structure becomes
chaotic.

9 THE SWIFT-HOHENBERG MODEL WITH A
NONPOTENTIAL CUBIC TERM

In the previous section we reported the results of our simula-
tions of the Swift-Hohenberg equation including a convective-
like term, suggested by the existence of this kind of term in the
amplitude equations of a structure containing three modes for-
ming, successively, an angle of 27 /3. Other modifications of
the Swift-Hohenberg equation have also been used to study
Rayleigh-Bénard convection. Manneville (1990) adopted a cu-
bic nonlinear term in the form — (% + (Vu)?) u and Greenside
and Coughran Jr. (1984) investigated pattern formation using the
cubic term in the form — (V)2 u. In both cases the resulting
patterns evolved towards stationary patterns. Cross et al. (1886)
considered a variation of the Swift-Hohenberg equation in the
following non-variational form:

a 2
roa—L; = 8u+3|Vu|2V2u—$4 <V2+I{§) u, (7)

with kg = 19 = & = 1. These authors focused on the problem
of wavenumber selection, and considered several pattern confi-
gurations in rectangular and in circular containers. They repor-
ted wavelenghts smaller than the critical one, and decreasing as
the control parameter ¢ increases. Nevertheless, the selected wa-
velength was found to depend on the type of pattern developed.
The authors concluded that no general wavenumber selection
principle exists in the framework of Eq. (7).

In addition, Cross et al. found a periodic time-dependent pat-
tern, where they observed a translation of the rolls. In this sec-
tion we present the results concerning a numerical simulation of
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Eq. (7) ina 40 x 40 box, forced with a ramp of the bifurcation
parameter —0.5 < ¢ < 0.5 along the x-direction. The para-
meters were set t0 ko = 3.1172 and o = 0.0509 as before,
and the simulation was performed using a time step A¢ = 0.05.
The results, summarized in Fig. 15, essentially comply with our
findings obtained by simulation of the Swift-Hohenberg equation
in ramped systems. The system develops a structure containing
a single focus in the sidewall where the bifurcation parameter
attains the maximum. The rolls tend to orientate in parallel
with the most subcritical sidewall, in the neighbourhood of that
wall. In other words, one of the main findings presented in this
work, the boundary subcritical effect, also appears upon model-
ling Rayleigh-Bénard convection with Eq. (7). The state of the
system at the end of the simulation (z = 15000) is shown in
Fig. 15a. The curve of the velocity of evolution, L1 x ¢, shown
in Fig. 155, captures the periodic time-dependent nature of the
asymptotic state. The period is T = 450. The Fourier transform
of the pattern shows that the relevant modes do not fall exactly in
a circular ring with average radius equal to the critical one, but
in a more irregular figure. In order to characterize the selected
wavelength of the structure we plotted, as before, the sum of the
amplitudes of the modes located in rings with thickness Ax
against « /k.. The curve displays a maximum in « /. =, de-
fining the fundamental mode of the pattern, x = 1.06«.
Again in this case, the selected wavelength is slightly bigger
than the critical one.

10 CONCLUSIONS

This work addresses the problem of pattern formation in extended
Rayleigh-Bénard systems submitted to a spatial non-uniform for-
cing. The analysis was performed by numerical integration of the
Swift-Hohenberg equation, in systems confined by rigid sidewe-
alls. There are two main results: first, the bulk orientation effect of
the gradient is always dominated by boundary effects in our simu-
lations. Second, we identified a clear boundary subcritical effect
requesting rolls to be parallel to a subcritical wall. The effect is
strong enough to qualitatively change a pattern with respect to
those obtained under uniform forcing: rolls parallel to a wall are
automatically perpendicular to adjacent walls and a focus is no
longer required, as in uniformly forced systems. Typically, the lat-
ter display a pair of focuses in the extreme of a diagonal, whereas
ramped systems with a critical or subcritical wall develop patterns
with a single focus. The effect suggests that non-uniform forcing
might provide means to control the density of defects in systems
displaying a roll pattern. Simulations in which all boundaries were
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Figure 14 — Simulation of the Swift-Hohenberg equation including a convective-like term in the form v(du/dx + du/dy), ina 30 x 30 system, using grids with
122 x 122 points. The first line of images refers to systems forced with a ramp 0 < & < 0.5, along the x-direction. The second line of images refers to uniformly
forced systems, with ¢ = 0.25. The associated L x ¢ curves show that uniformly forced systems, in which the coefficient v of the quadratic terms is sufficiently
small, evolve to a steady pattern (/). Ramped systems display a periodic time-dependent behaviour, even for low values of v (a). Upon increasing this coefficient,

the system evolves to aperiodic time-dependent behaviours.
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Figure 15 — Results concerning a simulation of the Swift-Hohenberg equation with the cubic term in the form 3 |Vu|2 V2u. (a) shows the system state at
t = 15000 and the diagram with the distribution of the bifurcation parameter along the x-direction. (b): the curve of the rate of evolution of the pattern, L x ¢,
which shows that the system presents a periodic time-dependent behaviour. (c): the Fourier transform of the pattern shown in (a). (d): wavenumbers existing in
the pattern. The peak, located in «/x. = 1.06 defines the fundamental mode, « -, which is larger than the critical and slightly larger than the fundamental mode

identified in the simulations performed with the cubic term in the form g u3.

mantained in subcritical conditions developed patterns totally free
of defects in the supercritical region. We also performed simula-
tions of non-potential versions of the Swift-Hohenberg equation.
In all cases, the local wavelength of the patterns remain close to
the critical one.

The time evolution of the patterns was followed by monitoring
the velocity of evolution of a norm measuring the distance between
two successive states of the system. This measure, contrary to
those based on saturation on the rate of change of the associa-
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ted potential, also captures the phase evolution. This evolution
is much slower than the saturation process, but far from mono-
tonous. In some cases, it ended with a collapse of a defect and a
qualitative change of the pattern. In all cases we observed a final
exponential decay of the rate of evolution of the norm, showing
that the system approaches a steady state.

Hence, it clearly appears in our analysis that the system
behaviour is dominated by boundary effects, irrespectively of its
size, when the ramp defines a super and a subcritical region
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in the convection cell. This may be related to the fact that the
system passes through criticality somewhere in the domain, where
the correlation length diverges. In this case, the usual separation
into bulk and boundary domains is meaningless, even in extended
systems. To conclude, we think that our numerical results suggest
that further theoretical and experimental investigations are needed
to reach a better understanding of subcritical boundary effects and
of the interaction between super and subcritical domains in exten-
ded systems.
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A THE NUMERICAL METHOD

The Swift-Hohenberg equation was solved by means of a finite
difference method using a semi-implicit splitting-type scheme.
The scheme is detailed in a paper by Christov et al. (1997). For
the sake of completenss we sketch here the main features of the
scheme.

Creating effective numerical schemes and algorithms for dif-
fusion equations and their generalizations vindicates considerable
effort due to important applications of these models. A variety of
different schemes has been created for the equation with second-
order diffusion (heat-conduction equation). The time stepping of
the solution can be done either by spectral (see the illuminating
work Frati et al. (1992)) or by explicit or implicit schemes with
finite differences or finite elements, or by certain combination of
these. In Ekebjaerg and Justtesen (1991), an explicit scheme al-
lowing vectorization is proposed for the advection-diffusion equa-
tion. The condition of stability of an explicit scheme imposes, as a
rule, very restrictive limitations on the time increment. It is much
more realistic for the fourth-order derivatives when Az < 4%,
This is an evidence why the problem of constructing implicit sche-
mes is of significance. However, the straightforward implementa-
tion of an implicit scheme in more than one spatial dimensions
results into very large linear systems whose solution are not ea-
sily tenable on desktop computer platforms.

An effective way to combine the stability properties of impli-
cit schemes and the cost-efficiency of the explicit ones is to use
the so-called coordinate splitting. The time step is implemented
through several half-time steps in which only one of the opera-
tors is implemented implicitly. The notion of splitting was intro-
duced in Peaceman and Rachford (1955), Douglass and Rach-
ford (1956) for the second-order parabolic equation (heat equa-
tion) and proved very fruitful (see Yanenko (1971) for review of
the earlier results).

The coordinate splitting method is still one of the most
popular technigues for solving advection-diffusion problems. In
Mampaey (1990) is developed an Alternating Directions Impli-
cit (ADI) scheme for studying solidification problems where spe-
cial care is needed since the temperature oscillations in the in-
terface between the phases may cause instability. In Hewett et al.
(1992) is applied the so-called “dynamic” ADI to strongly coupled
second-order equations and it is shown that the splitting method
requires one order less of magnitude for storage and it is one or-
der of magnitude faster. The coordinate splitting requires special
approach in case of complex domains. The problems connected
with applying ADI together with domain composition are treated
in Rosenfeld and Yassour (1994) where numerical solution is
obtained for variety of complex-shaped domains. A new class
of time-stepping algorithms is developed in Armero and Simo
(1992) for strongly coupled thermomechanical problems.

The original PDE is replaced by the following form, with a first
order discrete representation of the time derivative:

n+l _ n
70 2 - o eu" = 3g MR+ 2g ()]
ot
4 4\ n+1

—£ <8x4 + 8))74 + K0> u
ey (8)

—2Et T
9x29y?2

42 (0% 9
n
—2¢& K 8)6724_3)/724_ u-,

where »” and »"*! denote the dependent variable evaluated in
the time steps » and » + 1, respectively. Upon defining the
operators A, AY;, and the function /™, by:

9% k3

AL = —§4W—5470—§g(”n)2
a4 kb3

Ay = —E4W—5470—5g(u")2
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4un
S = e u +2g ) - 280 pRcE

— 2842 VA",

we may write equation (8) in the form:
un+1 _ N |

= (A% + AL)u" T 4 £, (9)

or:
(I = (A} + AL))u" = Ae(w” + (7). (10)

Here I is the identity operator. The inversion of the operator
(1 = (AY+ A7)

requires a considerable computational effort, since the unknowns
are coupled with those lying both in the neighbouring lines and
columns, through the spatial derivatives in two directions. For this
reason we used the siabilizing correction scheme, through which
Eq. (10) is splitted in the following two (Christov and Ridha 1994)
and (Christov et al. 1995):

(I = At AY)i = (I+ArAY)u" + A f", (1)

(I— At A" =i — At A", (12)

To prove that Egs. (11-12) are equivalent to (9) it suffices to
apply the operator (7 — Az A”?) to Eq. (12) and add the result
to Eqg. (11). We get:

n+1 n

—Uu _ (A£+A;)un+l +fn’

2ananm\ U
(I+(AD AxAy) A
hence the splitting scheme is equivalent to Eq. (9), within a se-
cond order correction. The advantage of the splitting is twofold:
The operator in the left hand side of Eqs. (11) and (12) displays
a penta-diagonal structure, when the space operators approxima-
ted to second order, on the difference level. The elements of these
operators are just numbers and not matrices, as in the case of
Eq. (10). Second, Eq. (11) can be solved line by ling and Eqg. (12)
can be solved column by column, reducing considerably the sto-
rage requirements. The penta-diagonal systems were then solved
by Gaussian elimination (Christov 1994).

This numerical scheme generalizes to the case of fourth-
order diffusion operators, the classical coordinate splitting intro-
duced by Peaceman and Rachford (1955), Douglass (1956) and
Yanenko (1971).

The scheme proved to be stable with &/ time-steps used in
the tests conducted to qualify our numerical code. Nevertheless,
beyond a certain limit, an increase in the time-step results in an
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increase in the time required by the system to attain a given state,
suggesting that there exists an go#imum time-step, which mini-
mizes the number of steps accomplished in each run. In most
of our simulations we attempted to use that optimum time-step,
which we found to be Ar = 0.05. May we mention that this
optimum time-step scales with the value adopted for the coeffi-
cient o of the Swift-Hohenberg equation, which we set to 7o =
0.0509. Gonsequently, in the case where tp = 1, we expect an
optimum time-step Az ~ 1. The largest simulations performed
in this work were run in grids with 202 x 202.

In the simulations performed with the quadratic convective-
like term, we adopted a similar numerical scheme, and assigned
that term to the “old” time-step. In the simulations performed
with the cubic term in the form 3 |Vu|? V2u, we adopted the
following scheme:

untl_yn

= = e(x)u" +3|Vu"? V3t

70

A A g
—S e +84+K0 u" (13)

7254i — 2842 VA",
9x29y?2 0
The operators A%, A7, and the function /™ are, in this case
defined by:
2
Al = — m—g +3|V | o3
2
Ay = —s -+ +3|V | I
34 n
M=) u" =28 —— T —2&4%¢ VA",

The splitting of Eq. (13) in two, was made as in the preceeding
case.
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