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Abstract

The present paper deals with the effect of dissipation on the propagation of wave packets governed by a wave equation
of Jeffrey type. We show that all packets undergo a shift of the central frequency (the mode with maximal amplitude)
towards the lower frequencies (‘‘redshift’’ in theory of light or ‘‘baseshift’’ in acoustics). Packets with Gaussian apodization
function do not change their shape and remain Gaussian but undergo redshift and spread. The possible applications of the
results are discussed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The propagation of waves in linear dissipative systems is well studied but most of the investigations are
concerned with the propagation of a single-frequency wave. On the other hand, in any of the practical situ-
ations, one is faced actually with a wave packet, albeit with a very narrow spread around the central fre-
quency. This means that one should take a special care to separate the effects of dispersion and dissipation
on the propagation of the wave packet from the similar effects on a single frequency signal.

The effect of dissipation of the propagation of wave packets seems important because their constitution can
change during the evolution and these changes can be used to evaluate the dissipation.

Especially elegant is the theory of propagation of packets with Gaussian apodization function.

2. The model

In this paper we consider the following model equation containing two types of energy loss: absorption and
dispersion. In 1D, the model is called Jeffrey’s equation
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which has a generic form but it appears in a variety of physically important situations. Naturally, the physical
meaning of the coefficients is different in the different models.

The effect of absorption (parametrized by the coefficient c in Eq. (1)) is to merely attenuate the amplitude of
wave motions by the same amount regardless to the frequency. Hence the attenuation does not affect the shape
of a wave packet (the apodization function). The effect of dispersive dissipation (parametrized by the dissipa-
tion coefficient d) is different for different frequencies/wave numbers. The dispersion affects the wave packets
not only by acting to diminish the total energy of the wave motion but also to change the apodization function
of the packet.

One of the oldest applications of Eq. (1) is in the acoustics of viscous compressible fluids. Under the
assumption of slight compressibility, the linearized Navier–Stokes equations, continuity equation, and equa-
tion of state reduce in 1D to the following system (see, e.g. [1, 2, Chapter 10])
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where u(x, t) is the longitudinal component of velocity, q is density, and p is pressure. Respectively, k is the coef-
ficient of bulk viscosity and q0 is the undisturbed density. Note that the coefficient of shear viscosity does not
play a role because of lack of shear in 1D acoustics motion (u is not a function of y and z). It is readily shown
that density and pressure can be eliminated from the above system to arrive at Eq. (1) with appropriately
defined coefficient d. Note that in classical acoustics, no attenuation is present. The latter appear when porous
medium is considered and the Darcy law is added to the N–S equation rendering them 1D to the following
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where j is the inverse of the Darcy coefficient. It is easy to show here that the term proportional to j results
into the attenuation term in Eq. (1). For derivation and discussion, see [3] and the literature cited therein.

We notice here that the bulk viscosity is not the only possible source of dissipation in acoustics. If the heat
conduction is acknowledged in the equation of state (the model is called Lighthill’s equation of state), another
dissipation mechanism is present that acts in a similar way as the bulk viscosity do.

Another model involving Jeffrey’s equation stems from the theory of viscoelastic continua. A combination
of Voigt-Kelvin and Maxwell model (see [4, p. 42], [5, Sec. 7.2]) gives the following relationship between the
stress tensor, s, and the tensor of rate of deformations e

sþ k1 _s ¼ gðeþ k2 _eÞ;

where g is the coefficient of shear viscosity, the dot stands for the full time derivative. Here k1 and k2 are called
‘‘relaxation time’’ and ‘‘retardation time’’, respectively. For the 1D shear flow in which ux = ux(y, t), one gets
the following equation (see [5, Sec. 7.4])
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which is once again the Jeffrey’s equation, Eq. (1). Unlike the acoustic case, one has to deal in viscoelastic
solids with transverse waves and the physical processes behind the retardation and relaxation times are
different from the process in acoustics. Here it is connected with the shear coefficient of viscosity, while in
acoustics it is due to bulk viscosity. However, the resulting mathematical model is essentially same.

Another situation in which one arrives at the same generic equation is the two-fluid model of multiphase
flows, e.g., the motion of dusty gas. Following [6], the linearized governing equation of the two-fluid model in
1D read
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where u is the velocity of the continuous phase (the gas), up is the velocity of the particulate phase, m is the
kinematic coefficient of shear viscosity of the gas, j is particle-to-gas density ratio, and s is a relaxation time
connected to the inverse of the Stokes’ interaction force between the two phases. By eliminating up between the
two equations of Eq. (3), one arrives at the following equation, (see [7])
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which is readily shown to be of the above discussed type Eq. (1).
The above considered models arise also in heat conduction. Replacing the Fourier law by the Maxwell–Cat-

taneo law (see, [8]) renders the heat conduction equation of hyperbolic type with linear attenuation (see, also
[9] for a further discussion of Maxwell–Cattaneo model). A rather similar situation to the theory of dusty gas
arises in microscopic heat conduction when two temperature fields are considered (see [10] for details).

The list of physically relevant models which reduce in 1D to Jeffrey’s equation Eq. (1), can easily be
extended further but it goes beyond the scope of the present work to give an exhaustive survey. The above
mentioned examples suffice to claim that investigating the propagation of waves as governed by Eq. (1) is
of importance. When single-frequency modes are concerned, exhaustive studies can be found in the literature.
The purpose of the present work is to elucidate the specific properties of propagation of wave packets as con-
trasted to the properties of propagation of single-frequency modes.

3. Propagation of spatial modes: dispersion relation

Consider harmonic waves eikxþx̂t, where x̂ can be, in general, a complex valued variable. The dispersion
relation for the propagation of harmonic waves governed by Eq. (1) is

�x̂2 þ icxþ idx̂k2 ¼ �c2k2; ð5Þ

which can be solved for the complex frequency x̂ as function of the real wave number k

x̂ ¼ i
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It is easily seen that for
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the discriminant is negative which means that x̂ is strictly imaginary (no real part). In this case the system is
over-damped and no oscillations in time are possible. This means that no traveling modes can exist in that
limit, and then the quantity ix̂ ¼ � 1

2
ðcþ dk2Þ defines the attenuation of the amplitude of the standing wave

with time. First we mention that for dc > c2 the condition (7) is satisfied and the discriminant is always neg-
ative which means that no oscillations in time are possible. However, even if dc < c2, the interval of existence
for oscillations is limited to
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cd

p
d

¼ k0 < k < k1 ¼
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cd

p
d

; ð8Þ

and no oscillations in time can exist outside this interval. This means that only standing modes are possible
outside that interval.

The case dc� c2 is of practical importance, because the speed of sound or light is usually much larger than
the attenuation and dissipation coefficients. For this case, the above expression, Eq. (8) can be simplified to
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i.e., the traveling modes cannot exist for
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k <
c

2c
or k >

2c
d
:

The lower cut-off frequency is governed by the attenuation, while the upper cut-off frequency is governed by
the dissipation. In other words, for finite values of the attenuation coefficient, c, very long waves are impos-
sible, and for finite value of dissipation coefficient, d, the interval is limited from above which means that
highly oscillatory modes are impossible. When d! 0, j! 0, the interval of existence of traveling waves ex-
tends to [0,1].

4. Localized wave packets

Let us consider here a wave packet for which the initial apodization function E(k, 0) 2 L2(�1,1) gives the
amplitude of the respective Fourier mode as function of the wave number k. The actual profile of the wave
packet as function of the spatial variable x is given by the Fourier integralZ 1

�1
eikxEðk; 0Þdk: ð10Þ

Any localized apodization function satisfying the conditionZ 1

�1
E2ðk; 0Þdk < þ1;

can represent a wave packet. If the spectral distribution E(k, 0) is taken as an initial condition, the spectral
content of the packet after time t be given by

Eðk; tÞ ¼ Eðk; 0ÞeixðkÞte�sðkÞt; ð11Þ

where x = x(k) is the actual (real valued) frequency of the wave, and s = s(k) gives the decay factor for the
wave of given wave number. These are given by the formulas

x̂ ¼ xþ is; x ¼
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Eq. (12) shows that an initial distribution of the energy as function of k will change in time in the sense that the
amplitudes of the shorter waves will diminish faster in time than the amplitudes of the longer waves. This will lead
to redistribution of the amplitudes and to a change of the apodization function of a wave packet that is subject to
evolution according to Jeffrey’s equation. Therefore a general shift of the central wave number towards longer
waves (smaller wave numbers k) is to be expected. In the case of light, this is called ‘‘redshift’’. The quantitative
values for the redshift for different apodization functions may differ. The most interesting case appears to be the
Gaussian distribution of the packet and we focus in this short note on the said case.

4.1. Gaussian apodization function

A Gaussian apodization function is given by

Eðk; 0Þ ¼ e�
1
2bðk�~kÞ2 ; ð13Þ

where ~k is the central wave number of the packet, and the coefficient b is related to the inverse of the width of
the wave packet. A larger b means a sharper spectral line in terms of wave number k, or what is equivalent, a
broader spectral line in terms of spatial frequency, k = 2pk�1. In general b ¼ bð~kÞ. A constant b means
that the width of the spectral line under consideration is not related to the value ~k of the central wave
number.

Let us denote by q the value of wave number k for which the amplitude defined by Eq. (13) is exactly e�p/4

times smaller than the maximal amplitude at k ¼ ~k. If we introduce the notation
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d ¼ q� ~k
~k

;

for the ‘‘width’’ of the wave packet, then the above requirement for the amplitude E(q) is satisfied when

d ¼
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p
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r
or b ¼ p

2d2
: ð14Þ

Hence, the total area under the curve from Eq. (13) (the integral of E(k) over the entire interval) is A ¼
ffiffiffiffiffiffiffiffiffiffiffi
2p=b

p
,

then the area of a rectangle of base d and height one is d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2bÞ

p
¼ 1

2
A. This means that Eq. (14) gives the

effective half-width of the packet.
Now, consider an initial condition given by the following Fourier integral

u0ðxÞ ¼
Z 1
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e�

1
2bðk�~kÞ2 eikx dk: ð15Þ

Then the evolution of Fourier density of the wave packet is given by the following simple relation

Eðk; tÞ ¼ eixtþikxe�
1
2bðk�~kÞ2 e�

1
2ðcþdk2Þt; ð16Þ

for the amplitude of a component with specific wave number k. The first term in Eq. (16) gives a traveling wave
(when it exists) with phase velocity

x
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4.2. Redshifting of Gaussian localized packets

Let us examine closely the shape of the spectrum as given by Eq. (11), (or by Eq. (16) for the Gaussian
case). We limit ourselves in this subsection to the case of Gaussian apodization function in order to elucidate
the main idea of how the dissipation influences the constitution of a wave packet. It is readily seen that for
t = T > 0, the maximum of E(k,T) is not anymore at k ¼ ~k. The position of the maximum is given by the
condition

dEðk; T Þ
dk

¼ �bðk � ~kÞ � dTk
� �

e�
1
2bðk�~kÞ2 e�

1
2ðcþdk2ÞT ¼ 0;

which is a linear equation for k and its root gives the following value �k at which the maximum is situated after
time T has passed

�k ¼ b~k
bþ dT

¼
~k

1þ db�1T
: ð18Þ

For the shift of the central wave number (the wave number for which the amplitude of packet is maximal) we
get

Dk ¼def �k � ~k ¼ �
~kdb�1T

1þ db�1T
or �k ¼

~k

1þ db�1T
: ð19Þ

Then

Dk
~k
¼ � db�1T

1þ db�1T
or

Dk
�k
¼ �db�1T ; ð20Þ

which means that at time T, the central wave number �k of a packet is shifted to the smaller wave numbers in
comparison with the initial central number ~k. In terms of wave length k = 2p/k, the wave number is expressed
as k = p/k and we get for the shift that

158 C.I. Christov / Wave Motion 45 (2008) 154–161



Author's personal copy

Dk ¼ 2p
k
� 2p

�k

� �
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k� ~k
�k~k
¼ � 2p

�k

Dk
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¼ ��k

Dk
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;

which gives

z ¼ Dk
~k
¼ �Dk

�k
¼ db�1T ; ð21Þ

where we use the ubiquitous notation for the redshift, z.
The last expression means that the central wave length of the packet is shifted to the longer waves. Borrow-

ing a coinage from the theory of light we can say that the packet is redshifted. Naturally, for acoustic waves it
should be called baseshift. Eq. (21) shows that the redshift depends linearly on the time of propagation. As
witnessed by the Eq. (17), the group velocity of the packet is not constant. However, for very tightly localized
packets, we can assume that the group velocity is well approximated by the phase velocity cg ¼ xð~kÞ=~k ¼ c
and to assess the propagation time as T � c�1L, where L is the length traveled by the packet. Then Eq.
(21) adopts the form

z ¼ Dk
~k
¼ d

cb
L ¼ HL; where H ¼ d

bc
: ð22Þ

The relation Eq. (22) can be called ‘‘Hubble law’’ for redshifting of a Gaussian wave packet. More precisely
we shall call it ‘‘distance-Hubble law’’, because the redshift is proportional to the distance traveled by the wave
packet. Then Eq. (21) can be named ‘‘time-Hubble law’’. Note that due to the intricate dependence of the
group velocity on wave number, the time-Hubble law is strictly linear, while the distance-Hubble law can
be slightly nonlinear because the Hubble constant can be function of ~k through cg and hence of distance L

for a given T. For c,d� c one gets that cg � c which means that the distance-Hubble law is also virtually lin-
ear. Even if we assume that c,d� c, Hubble constant is a function of the central wave number ~k through the
dependence b ¼ bð~kÞ which specifies the width of a packet as a function of its central wave number.

It is useful to rewrite Eq. (11) as follows

Eðk; T Þ ¼ e�
c
2T e�

1
2ðbþdT Þðk��kÞ2 e�

1
2dT ð1þdb�1T Þ�1

; ð23Þ
which means that the actual magnitude of the spectrum at its maximum is

EmðT Þ ¼ max
k

Eðk; T Þ ¼ e�
c
2T e�

1
2dT ~k2ð1þdb�1T Þ�1

:

The magnitude of packet’s maximum decays exponentially with time with an exponent that depends line-
arly on the attenuation c, but the role of the dispersive dissipation d is more intricate. For very large times T,
the role of dissipation amounts to an additional attenuation b/2 which means that a packet that is narrower in
terms of wave number (wider in wave length) is attenuated more. Clearly, for non-zero values of T, the mag-
nitude of the maximal amplitude decreases exponentially. It is convenient to scale the wave packet by Em(T)
and to concern ourselves with the renormalized spectrum

Êðk; T Þ ¼ Eðk; T Þ
EmðT Þ

¼ e�
1
2ðbþdT Þðk��kÞ2 ; ð24Þ

which is once again a Gaussian distribution with a larger coefficient b, namely

bT ¼ bþ dT � bð1þ zÞ: ð25Þ

The main conclusion from this subsection is that the dissipation acts to shift the central wave length of the
packet to the longer waves and to increase its width while preserving the Gaussianity. Preserving the shape of
the spectral density is a unique property of the Gaussian apodization functions.

4.3. Spatial propagation

In this section we consider the propagation of waves from a boundary condition at x = 0 which is a super-
position of harmonic waves of type eixt, namely

R
EðxÞeixt dx. We can rewrite the dispersion equation as
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k2 ¼ x2 � icx
c2 þ idx

;

which gives for the imaginary part of the wave number (responsible for the spatial growth or decay of the
wave) the following

I½k� ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc4 þ d2x2Þ

q
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�ðc2 � cdÞx2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � cdÞ2x4 þ ðcxc2 þ dx3Þ2

qr
: ð26Þ

The sign ‘‘+’’ will not be considered because we are interested in waves that propagate to the right and decay
at x!1. The relation, Eq. (26), can be simplified under the above adopted condition cd� c2. We also as-
sume (cxc2 + dx3)� c2x2 and then Eq. (26) is replaced by

I½k� � 1

2

cc2 þ dx2

c3
: ð27Þ

A packet produced at x = 0 with a Gaussian distribution (the factor c2 is introduced, to make coefficient b
have the same dimension as in previous sections)

EðxÞ ¼ e�
1
2bc2ðx�~xÞ2 ; ð28Þ

will arrive at x = L with the following constitution

e�
1
2bc2ðx�~xÞ2 e�

1
2ðcc2þdx2Þc�3L ¼ eð�

1
2c�d�x~xÞc�1Le�

1
2bc2ðx��xÞ2 ;

where the central frequency is changed to

�x ¼ ~x

1þ db�1c�1L
: ð29Þ

This means that the redshifts for the frequency x and the wave length k ¼ 2p
x are, respectively

Dx
~x
¼ � db�1c�1L

1þ db�1c�1L
;

Dk
~k
¼ db�1c�1L: ð30Þ

Now the distance-Hubble law is linear with Hubble constant H = db�1c�1. One can easily recast Eq. (30) as a
time-Hubble law through the relationship T ¼ Hc�1

g , which can be nonlinear.

5. Conclusions

In the present work, the effect of attenuation and dissipation on propagation of waves governed by the
Jeffrey equation is addressed. When packets of small but finite breadth are considered the presence of dissi-
pation changes the central wave number of the packet. The distribution of the wave length around the central
length is assumed to be Gaussian which is the most frequently encountered case in cosmology when hot stars
are observed. Dispersion relation for the damped wave equation is derived and the evolution of the packet
density is investigated in time (or space). It is shown that the attenuation acts merely to decrease the amplitude
of the shifts packed, while the dissipation damps the higher frequencies stronger than the lower frequencies
and shifts the maximal frequency of the packet to lower frequencies (longer wave lengths), i.e., the packet
appears redshifted upon its arrival. For Gaussian wave packets, this kind of redshift is linearly proportional
to the time passed or the distance traveled. The coefficient of proportionality contains the ratio of the dissi-
pation coefficient and the initial width of the distribution which means that the thicker packets are redshifted
more than the narrower ones for the same distance or for the same time. We call this liner relationship ‘‘Hub-
ble Law’’ for redshifting of wave packets.

The new approach can be used in acoustics for devising methods for estimating the bulk viscosity of air, or
other slightly compressible liquids based on the relationship between the ‘‘baseshift’’ and viscosity coefficient.
An application to cosmology is also possible because the spectral lines measured in the experiments are wave
packets, and never a single isolated wave comprising it. Thus, one has to take special care to distinguish
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between the redshift of the packet (as outlined in the present work) and the redshift due to the dilation of a
single wave.
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