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A material-invariant (frame indifferent) version of the Maxwell–Cattaneo law is proposed
in which the relaxation rate of the heat flux is given by Oldroyd’s upper-convected deriv-
ative. It is shown that the new formulation allows for the elimination of the heat flux, thus
yielding a single equation for the temperature field. This feature is to be expected from a
truly frame indifferent description.
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1. Introduction

One of the most successful models in continuum physics is Fourier’s law of heat conduction
q ¼ �jrT; ð1Þ
where q is the thermal flux vector, Tðx; tÞ is temperature, and jð> 0Þ stands for the thermal conductivity. Many other con-
stitutive relations in continuum mechanics are modeled on the same concept of a linear connection between different char-
acteristics, e.g., the relation between the stress and strain tensors in elasticity and the stress and rate of strain tensors in a
viscous liquid. One of the main shortcomings of Fourier’s law is that it leads to a parabolic equation for the temperature field.
This means that any initial disturbance is felt instantly throughout the entire medium. This behavior is said to contradict the
principle of causality.

To correct this unrealistic feature, which is known as the ‘paradox of heat conduction’ (PHC), various modifications of Fou-
rier’s law have been proposed over the years, not all of which have been successful (see the illuminating discussion in Jordan
et al. (2008)). Of these, the best known is the Maxwell–Cattaneo (MC) law (Joseph and Preziosi, 1989, 1990; Chandrasekha-
raiah, 1998; Jou et al., 1998)
ð1þ s0otÞq ¼ �jrT; ð2Þ
where ot stands for the partial time derivative. Here, the thermal relaxation characteristic time s0ð> 0Þ represents the time
lag required to establish steady heat conduction in a volume element once a temperature gradient has been imposed across
it (Chandrasekharaiah, 1998). The new term can be properly termed ‘‘thermal inertia”. It should be mentioned that the value
of s0 has been experimentally determined for a number of materials (Joseph and Preziosi, 1989, 1990; Caviglia et al., 1992).
And although s0 turns out to be very small in many instances, e.g., s0 is of the order of picoseconds for most metals
. All rights reserved.
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(Chandrasekharaiah, 1998; Antaki, 1995), there are several materials where this is not the case, most notably sand (21 s), H
acid (25 s), NaHCO3 (29 s), and biological tissue (1–100 s) (Chandrasekharaiah, 1998; Antaki, 1995).

The partial time derivative added by Cattaneo in the constitutive relationship between the heat flux and the temperature
succeeded in resolving the main shortcoming of the Fourier model, rendering the heat-conduction equation to a damped
hyperbolic equation. As a result, the propagation of a heat disturbance has a finite speed in such a model.

The success of the Maxwell–Cattaneo (MC) model showed the direction for generalization of Fourier’s model to correct the
temporal behavior of the solution. There are, however, more problems with Fourier law which have not yet gained the notoriety
of the above discussed PHC; e.g., higher spatial gradients may be required for the constitutive relation between the heat flux and
the temperature as discussed in Christov (2007), but this goes beyond the framework of the present work. Here we are con-
cerned with properties of the time-dependent terms in the constitutive relationship for the propagation of heat, namely with
the correct form of the relaxation of the heat flux introduced by Cattaneo.

The MC law involves the mere partial time derivative and should be considered only as a ‘place holder’ for a more com-
plete formulation that acknowledges the mandatory invariance for any type of constitutive relation. In mechanics of con-
tinua, fields and transformations are called ‘objective’ when they transform according to specific rules when changing the
coordinate system (see, e.g., Chadwick (1999); Marsden and Hughes (1994)). There are different modifications of the time
derivative that are objective, and it is still not a settled issue which one has to be preferred when trying to make ‘objective’
(or material indifferent) a constitutive law involving relaxation.

With respect to the MC law, the application of principle of objectivity appears to have been initiated by Fox (1969). How-
ever, Straughan and Franchi (1984) showed that the Fox’s choice of Jaumannian derivative (called alternatively, Jaumann
rate) led to physically questionalble results in the problem of Bénard convection. Subsequently, Lebon and Cloot (1984) trea-
ted the same problem, but with a modified version of the objective time derivative, and uncovered different qualitative
behavior of Bénard convection. It should be noted, that the objective rate used by Lebon and Cloot (1984) was once again
a version of the Jaumann rate. These two works showed that it was not enough to take just any objective derivative, but
rather, further considerations have to be taken into account. For example, Haupt (2002, p. 321) pointed out that if the Jau-
mann rate is taken as the objective derivative of the stress tensor in Maxwell’s model of viscoelastic liquids, then the solution
is not unique. Haupt (2002) goes on to argue that the Oldroyd objective rate normally leads to well posed problems.1 This
gives additional support for the main idea of the present paper: to use an Oldroyd-type objective rate in the MC model.

In all objective rates, the convective derivative is present, which makes the models Galilean invariant. The importance of
this fact was argued by Christov and Jordan (2005) who showed that without the convective terms, the Maxwell–Cattaneo
law leads to paradoxical evolution of thermal waves in a moving frame. This means that the correct direction of improving
the model is to use one of the invariant derivatives (objective rates). The use of the material derivative allowed Christov and
Jordan (2005) to remove the above mentioned paradoxical feature. However, there remained an undesirable feature of their
formulation: the impossibility to derive a single equation for the temperature. At the same time, if one formulates the model
in the so-called ‘referential description’ (Chadwick, 1999; Marsden and Hughes, 1994; Truesdell, 1977), the objective rate is
simply the partial time derivative, and the latter commutes with the spatial gradients, thus allowing one to derive a single
equation for the temperature. Our intuitive understanding is that this property should somehow be preserved in the spatial
description, provided that the pertinent objective rate is employed.

In this paper, we present the case of using another Lie derivative, namely Oldroyds’ upper-convected derivative. It was
introduced by Oldroyd (1949) for tensors of second rank, and has been widely used in fluid mechanics for modeling Maxwell
viscoelastic liquids. The model, which involves the upper-convected derivative, is reffered to as the ‘‘Oldroyd-B viscoelastic
liquid” (Bird et al., 1987). To adapt Oldroyd’s idea to heat conduction, we re-derive the objective rate of a vector density and
use the result to modify the MC law. We show that the proposed upper-convected form of the MC law allows one to elim-
inate q, thus yielding a single equation for the temperature field.

Here is to be mentioned that a radically different approach to the finite-speed heat conduction was originated by Green in
Naghdi in 1991 (see Green and Naghdi (1995a,b)). In which the thermal displacement is used as the main variable. This is a
very promising model and has been put to extensive testing (see Bargmann and Steinmann (2007) and the literature cited
therein, and Bargmann et al., 2008 for an interesting specific example). The formulation developed here, based on Oldroyd’s
upper-convected derivative, should also be applicable in Green and Naghdi’s model.

2. Invariant time derivative of a vector density

Directional and other invariant derivatives of tensors are investigated in numerous mathematical and physical works but
in order to make the paper selfcontained and to clarify the physical meaning, we present here a brief account of the pertinent
derivations.

Consider the 3D space and a fixed system of coordinates, fxig, in it. The fixed coordinate system is called the ‘current con-
figuration’ in mechanics of continua (Chadwick, 1999; Truesdell, 1977). It can be assumed to be Cartesian without loosing
the generality. Together with the fixed coordinate system, consider a generally curvilinear moving coordinate system,
f�xig, that is embedded in the material continuum occupying the geometrical space in the sense that coordinate lines of
1 As pointed out by Marsden and Hughes (1994), the subject of different ‘objective rates’ is still a controversial one in continuum mechanics.
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the moving system consists always of the same material particles. Then the transformation xj ¼ f jð�xi; tÞ presents the law of
motion of a material particle, parametrized by the coordinate �xj. Assume that at time t, the two coordinate systems coinside.
Then at time t þ Dt, the law of motion gives the infinitesimal transformation xj ¼ �xj þ v jDt, which can be resolved for the
material coordinates:
�xi ¼ xi � v iðxjÞDt; ð3Þ
where v i is the contravariant velocity vector.
oxj

o�xi
¼ dj

i þ Dt
ov j

oxi
þ oðDtÞ; o�xi

oxj
¼ di

j � Dt
ov i

oxj
þ oðDtÞ: ð4Þ
Let A represent some mechanical quantity, e.g., stress vector, electric field, temperature flux, etc. For all these mechanical
characteristics, the actual observable is the following integral (see, e.g., Schrödinger (1950))
Z

D
Ad3x ¼

Z
�D

Ad3�x: ð5Þ
The principle of material invariance requires that this integral be invariant under coordinate transformation, which means
that the vector A is a tensor density (or what is called ‘relative tensor’). We use the old gothic fonts to distinguish the com-
ponents of a vector density from the components of a regular vector, hence Ak are the contravariant components of A. In
component form, the integral in the left-hand side can be rewritten as
Z

D
Akdx1dx2dx3 �

Z
�D

o�xk

oxj
JAjd�x1d�x2d�x3;
where a summation is understood if an index appears once as a superscript and once as a subscript. Respectively, J is the
Jacobian of the coordinate transformation,
J ¼ oxi

o�xj

���� ���� ¼ 1þ Dt
o�v i

oxi
þ oðDtÞ: ð6Þ
Being reminded that D is an arbitrary region, one finds the transformation rule for a vector density in contravariant
components
�Ak ¼ J
o�xk

oxl
Al: ð7Þ
Material invariance (see Oldroyd (1949)) requires that in constitutive laws that are non-local (i.e., containing relaxation
and/or retardation), the total time variance of a tensor density is used, namely
dAj

dt
¼ lim

Dt!0

�Ajð�xk; t þ DtÞ �Ajðxk; tÞ
Dt

: ð8Þ
Using a Taylor series for the first term in the numerateor on the r.h.s. of Eq. (8) with Eq. (3) acknowledged, yields within
the order oðDtÞ the following
�Ajð�xk; t þ DtÞ ¼ �Ajðxk; tÞ þ Dt
o �Aj

ot
þ v l o

�Aj

o�xl

� �
¼ �Ajðxk; tÞ þ Dt

oAj

ot
þ v l oAj

oxl

" #
; ð9Þ
where the fact is also acknowledged that at any moment of time t, vectors A and �A and their gradients coinside.
Now, the contravariant components Ak transform according to the rule given in Eq. (7), which gives within the asymp-

totic order oðDtÞ the following
�Ajðxk; tÞ ¼ 1þ ov i

oxi
Dt

� �
AjðxkÞ � ovk

oxm
AmðxkÞDt

� �
¼ AjðxkÞ þ ov i

oxi
AjðxkÞDt � ovk

oxm
AmðxkÞDt: ð10Þ
After making use of Eq. (6) and neglecting the higher order terms in ðDtÞ, Eq. (10) yields
dAj

dt
¼def lim

Dt!0

�AjðxkÞ �AjðxkÞ
Dt

¼ oAj

ot
þLvAj ¼ oAj

ot
þ vk oAj

oxk
� ov j

oxm
Am þ ov i

oxi
Aj; ð11Þ
where Lv is the Lie derivative along the vector field v i (see Lovelock and Rund (1989) for a mixed tensor density of arbitrary
rank). The first term in the invariant derivative is the partial time derivative which accounts for the changes of the compo-
nents as functions of time. The second term represents the changes due to the fact that the coordinate system and the asso-
ciated basis are also changing with time (being ‘convected’ with the velocity field of the material continuum). In abstract
vector notations, valid in any coordinate system, the above derived objective time derivative of a vector density has the form
dA
dt
¼ oA

ot
þ v � rA� A � rv þ ðr � vÞA: ð12Þ
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For a pointed exposition of different issues connected with invariant derivatives, we refer the reader to Triffeault (2001)
and the literature cited therein. Actually, what Oldroyd did amounted to taking the directional derivative of a contravariant
tensor density along the contravariant velocity vector of the material point at which the constitutive relation was written,
which is a generalization of the advective (i.e., the nonlinear) part of the usual material derivative.

Following established terminology (Bird et al., 1987), we can call Eq. (12) ‘the upper convected’ material derivative (objec-
tive rate) of vector A. Note that if A was not a tensor density, but an absolute tensor, then the last term in Eq. (12) would be
absent (see, also Triffeault (2001)). As shown by Oldroyd (1949), there is a difference in the invariant derivatives of a con-
travariant and a covariant tensor, and the choice was left open to additional mechanical considerations. In fact, this is a much
deeper question, one which goes beyond the scope of the present letter. The issues connected with the choice between the
upper convected and lower convected derivative are still debated in the literature, and the verdict seems to be that the
choice is dictated by the particular application. The upper convected Oldroyd derivative appears to be relevant in most of
the cases found in the literature. We refer the reader to Bird et al. (1987) for details. Accordingly, we limit our attention
in the present work to the upper-convected formulation of the invariant time derivative.

3. Frame indifferent Maxwell–Cattaneo law

The main idea of the present work is to replace the partial time derivative in the MC law with the upper-convected Old-
royd derivative, which is a frame indifferent objective rate. For the purpose of present work, it is important to keep in mind
that the heat flux is actually a vector density, rather than an absolute vector.

Since for a scalar T , the invariant time derivative is simply the total (material, susbtantial, convective, etc.) derivative,
then the material invariant form of the balance law for the internal energy reads
qcp
oT
ot
þ v � rT

� �
¼ �r � q: ð13aÞ
v Here, q is the mass density and cp is the specific heat, where both of these parameters are taken here to be constant.
Now in addition to Eq. (13a), we have the frame-indifferent generalization of Fourier’s law with relaxation of the heat flux,

namely
s0
oq
ot
þ v � rq� q � rv þ ðr � vÞq

� �
þ q ¼ �jrT; ð13bÞ
where we recall that s0 is the relaxation time of heat flux and jð> 0Þ stands for the thermal conductivity.
We call Eq. (13a) the frame-indifferent MC model of heat conduction. This model is a straightforward generalization of

the model from Christov and Jordan (2005), which is based on the material derivative. That model was shown to be irreduc-
ible, in the sense that the flux cannot be eliminated (i.e., a single equation for the temperature field cannot be derived); again,
see (Christov and Jordan, 2005). Hence, it is important to interrogate the new model for reducibility.

3.1. Reduction to a single temperature equation

Now we will show the consequences of taking the upper-convected derivative in lieu of the mere material derivative. Fol-
lowing the gist of a similar derivation for the displacement current given in Christov (2006), we show that the flux vector q can
be eliminated between the two Eqs. (13a) and (13b). To this end we take the operation div of the first term in the latter to obtain
r � ½qt þ v � rq� q � rv þ ðr � vÞq� ¼ ðr � qÞt þ v � rðr � qÞ þ rv : rq�rq : rv � q � rðr � vÞ
þ q � rðr � vÞ þ ðr � vÞðr � qÞ ¼ ðr � qÞt þ v � rðr � qÞ þ ðr � vÞðr � qÞ ¼ ðr � qÞt þr � ½ðr � qÞv �: ð14Þ
This allows us to get from Eq. (13b) the following
s0fðr � qÞt þr � ½ðr � qÞv � þ r � qg ¼ �r � ðjrTÞ; ð15Þ
and to substitute Eq. (13a) in Eq. (15), arriving thus at a single equation for the temperature field, namely
s0½Ttt þ 2v � rTt þ v t � rT þ ðTt þ v � rTÞðr � vÞ þ v � rðv � rTÞ� þ Tt þ v � rT ¼ r � ðkrTÞ; k ¼ j
qcp

; ð16Þ
where k is called the ‘coefficient of heat diffusion’.
The result in Eq. (16) is very important. It shows that if the proper invariant time derivative is used for the relaxation term

in the MC law, then a single equation for the temperature can be derived, just as is the case of the linearized MC law, which
involves a mere partial time derivative.

3.2. Galilean invariance

The main point raised by Christov and Jordan (2005) was that the ‘local’ MC law with the partial time derivative of the
heat flux has the following undesirable property: it is not Galiean invariant. It is, of course, natural to expect that a material
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invariant (frame indifferent) formulation like the one presented above retains Galilean invariance. Indeed, if we introduce
the following change of variables, corresponding to a frame, moving with a constant velocity V ,
n ¼ x� Vs; t ¼ s; Tðx; tÞ ¼ Hðn; sÞ; v ¼ V þ u;
then we find that
Tt ¼ Hs �rV � rnH;

Ttt ¼ Hss � 2V � rnHs þ VV : rnrnH

rxTt ¼ rnHs � V � rnrnH

v t ¼ us � V � rnu:

ð17Þ
In the above formulas, the products of the type VV have the ubiquitous meaning of dyads. Introducing these expressions in
Eq. (16) we get
s0 Hss � 2V � rnHs þ VV : rnrnHþ ðus � V � rnuÞ � rnH½ þ 2ðV þ uÞ � ðrnHs � V � rnrnHÞ þHsðrn � uÞ
þ VV : rnrnHþV � rnðu � rnHÞ þ Vu : rnrnHþ v � rnðv � rnHÞ� þHs � V � rnHþ ðV þ uÞ � rnH ¼ rn � ðkrnHÞ;

ð18Þ
and we can rewrite the above expression as follows
s0 Hss � g2V � rnHs þ dVV : rnrnH þ us � rnH� ðV � rnuÞ � rnH
h

þ g2V � rnHs þ 2u � rnHs � 2uV : rnrnH

� 2 dVV : rnrnH þHsðrn � uÞ þ dVV : rnrnH þ ðV � rnuÞ � rnHþ Vu : rnrnH

þ Vu : rnrnH þ v � rnðv � rnHÞ� þHs � V � rnHþ V � rnHþ u � rnH ¼ rn � ðkrnHÞ: ð19Þ
Canceling the like terms, we get
s0½Hss þ us � rnHþ 2u � rnHs þHsðrn � uÞ þ u � rnðu � rnHÞ� þHs þ u � rnH ¼ rn � ðkrnHÞ; ð20Þ
which has exactly the same form as Eq. (16), but for the variables defined in the moving frame. Thus, we have proved the
Galilean invariance of the proposed model.

Actually, the new model is not just Galilean invariant: it is also invariant in any accelerating and generally deforming
coordinate system connected with the motion of the material continuum in which the thermal wave propagates.

The fact that we were able to derive a single equation for the temperature speaks strongly in favor of the choice of Old-
royd’s upper-convective derivative as the objective rate for the MC law.

4. Summary

In this paper, the generalization of Fourier’s law known as the Maxwell–Cattaneo (MC) law, has been re-examined from
the point of view of material invariance. It has been argued that the time derivative of the heat flux should, in fact, be Old-
royd’s upper-convected derivative, in order to preserve the material invariance of the model. A detailed derivation of Old-
royd’s type of Lie derivative is presented for the case of a contravariant vector density. The reformulated MC law has
been shown to yield a single equation for the temperature field, which distinguishes it favorably from the other invariant
formulations, including the formulation that makes use of the standard material derivative.
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