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a b s t r a c t

We study the effects of the Maxwell–Cattaneo (MC) law of heat conduction on the flow of a Newtonian
fluid in a vertical slot subject to both vertical and horizontal temperature gradients.Working in one spatial
dimension (1D), we employ a spectral expansion involving Rayleigh’s beam functions as the basis set,
which are especially well-suited to the fourth order boundary value problem (b.v.p.) considered here, and
the stability of the resulting dynamical system for the Galerkin coefficients is investigated. It is shown
that the absolute value of the (negative) real parts of the eigenvalues are reduced, while the absolute
values of the imaginary parts are somewhat increased, under the MC law. This means that the presence
of the time derivative of the heat flux increases the order of the system, thus leading to more oscillatory
regimes in comparisonwith the usual Fourier case.Moreover, no eigenvalueswith positive real partswere
found, which means that in this particular situation, the inclusion of thermal relaxation does not lead to
destabilization of the motion.

Published by Elsevier Masson SAS.

1. Introduction

One of the main shortcomings of Fourier’s law of heat conduc-
tion is that it leads to a parabolic equation for the temperature
field. This means that any initial disturbance is felt instantly, but
unequally, throughout the entire medium in question. This behav-
ior is said to contradict the principle of causality; and is known as
the ‘paradox of heat conduction’. To remedy this unrealistic fea-
ture, various modifications of Fourier’s law have been proposed
over the years, not all of which have been successful (see, e.g., [1]).
Of the formulations that have proven physically acceptable, the
best known is the Maxwell–Cattaneo (MC) law of heat conduction
[2–6], which on denoting the thermal conductivity as K(>0) as-
sumes the form

(1 + τ0∂t) q = −K∇T . (1)

Here, T denotes the absolute temperature; q is the heat flux vec-
tor; ∂t stands for ∂/∂t; the thermal relaxation time τ0(>0), which
along with K is hereafter taken to be constant, represents the time
lag required to establish steady heat conduction in a volume ele-
ment once a temperature gradient has been imposed across it [4];
and it should be noted that the MC law reduces to Fourier’s law
when τ0 := 0.

∗ Corresponding author.
E-mail address: pjordan@nrlssc.navy.mil (P.M. Jordan).

Weobserve that the time rate appearing in theMC law ismerely
a partial time derivative. As a result, q can be eliminated between
Eq. (1) and the energy balance law

ρcp(∂tT + v · ∇T ) = −∇ · q, (2)

where v is the velocity vector and it is assumed that no thermal
sources/sinks are present, to arrive at the following equation for
the temperature field:

τ0 [Ttt + (v · ∇T )t ] + Tt + v · ∇T = τ0c2∇2T , (3)

where κ = K/(ρcp) is the thermal diffusivity and c =
√
κ/τ0.

In the case of a continuum at rest, Eq. (3) reduces to the damped
wave equation, which is hyperbolic. Thus, when v = 0, Eq. (3) pre-
dicts that heat conduction occurs via the propagation of damped
thermal waves of finite speed c , a phenomenon known as ‘second
sound’ [2,3].

In order to understand the role played by the time derivative in
the MC law, one needs to consider flow problems that involve suf-
ficiently rich phenomenology, but with extremely simple geome-
try. The problem of 2D convection in a horizontal layer considered
in [6–8] provides a situation in which the additional terms could
influence the solution, but the physics contained therein may be
obscured by the mathematical complications associated with the
finite, 2D geometry. Clearly, a 1D flow offers the needed simplic-
ity for separating out these different effects. However, in 1D con-
vective flow (regardless of whether it is in a horizontal or vertical
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layer with differentially heated walls), the convective terms cancel
identically if the temperature has only one (horizontal or vertical)
gradient.

For this reason, in this article, we turn our attention to the
problem of convective flow in a vertical slot, first considered in [9],
in which the temperatures of the walls are not merely different,
but are also functions of the vertical coordinate. This flow was
found to exhibit a rich phenomenology, especially in the case of
modulations of the gravitational acceleration: The so-called ‘g-
jitter’ effect. The latter was studied by Homsy and co-workers
and interesting routes to parametric instability were uncovered;
see [10–16]. In what follows, we shall refer to this type of flow
as ‘two-gradient convection’. It seems that even without the g-
jitter effect, this flow configuration can be a good testing ground in
which to study the effect that the MC law has on free convection.

2. Convection in a vertical slot

Consider now an infinite vertical slot, of width 2h, filled with a
thermally conducting Newtonian fluid. Taking the x- and y-axes
of a Cartesian coordinate system perpendicular and parallel to,
respectively, the axis of the slot, we place the left and right walls
of the slot at x = −h and x = h, respectively. (For the details of
the geometry and the flow configuration, we refer the reader to
[14,16]).

For incompressible convective flows, the current approach in-
volves the use of what has come to be known as the Boussinesq
approximation, wherein the dependence of density on pressure is
neglected. Assuming, as usual, that the fluid’s coefficient of ther-
mal expansion, α, is very small, the Boussinesq-based model reads
∂v
∂t

+ v · ∇v = −αg(T − TR)j + ν1v, (4)

where hereafter the velocity vector assumes the form v = (u, v), ν
is the kinematic viscosity, g is the acceleration due to gravity, and j
is a unit vector in the vertical direction. In addition, TR is some ref-
erence value of the temperature and the difference T − TR is also
assumed to be small, so that quadratic and higher terms can be ne-
glected in the expansion relating the density to the temperature, as
the Boussinesq approximation allows. Thus, Eqs. (3) and (4) form a
closed system for the unknowns v, T .

Let us define the reference temperature as TR = (T+ + T−)/2,
where T− and T+ are the temperatures of the left and right walls
at vertical position y = 0. Then β = (T+ − T−)/h denotes the
horizontal temperature difference, where T+ > T− is assumed.
In addition, ∆T denotes the imposed vertical gradient of the wall
temperature (a constant). Letting δ = ∆T/β , we define the
dimensionless perturbations of temperature θ and heat flux q̂ as
follows:

T − TR =


θ +

1
2
x
h

+ δ
y
h


hβ, q = (q̂ + δj)βK . (5)

Now, since the flow is not created by a prescribed velocity at the
boundary, it is convenient to set U = ν/h as the velocity scale and
to introduce the following dimensionless variables:

t = t̂
h
U

= t̂
h2

ν
, x = hx̂,

y = hŷ, u = ûU, v = v̂U,
(6)

along with the dimensionless constants

Sg =
τ0ν

h2
, Ra =

gα∆Th4

ν2
, Pr =

ν

κ
, (7)

which are termed the Straughan,1 Rayleigh, and Prandtl numbers

1 What we refer to as the Straughan number, Sg, is named here in honor of
Prof. Brian Straughan, whose pioneering work on the impact of thermal inertia on
convection has been the inspiration for the present paper.

respectively. After the derivation of the dimensionless system,
the hats can be omitted without fear of confusion. It should be
noted that Sg = τC Pr, where τC =

τ0κ
h2

is known as the
Cattaneo number [6]. In our view, as it involves the kinematic
viscosity, the Straughan number is the more pertinent parameter
when considering thermal convection in viscous fluids; indeed, the
Straughan number is directly connectedwith the effects of thermal
inertia: A large Sg implies a large thermal inertia, while Sg := 0
gives Fourier’s law.

The posing of the present problem has been sketched-out
in [17], where it was shown that the only nontrivial velocity
component is the vertical one, i.e., v, and that the first momentum
equation reduces to ∂p/∂x = 0. It can be shown that, in terms of
the stream functionΨ (see [14,16] and the literature cited therein),
the 1D equations of motion read

∂3Ψ

∂x2∂t
= −

Ra
δ

[
∂Θ(x, t)
∂x

+
1
2

]
+
∂4Ψ

∂x4
, (8a)

Sg
[
∂2Θ

∂t2
− δ

∂2Ψ

∂x∂t

]
+
∂Θ

∂t
− δ

∂Ψ

∂x
=

1
Pr
∂2Θ

∂x2
. (8b)

The dimensionless boundary conditions (b.c.’s) read

Ψ (±1, t) = ∂xΨ |x=±1 = 0, Θ(±1, t) = 0, (9)

which express the non-slip conditions and the fact that Θ is the
perturbation of the main linear temperature profile.

3. Formulation as a single equation

First, we eliminate the temperature from Eqs. (8) by differenti-
ating Eq. (8b) with respect to x and then introduceΘx from Eq. (8a)
to obtain

Sg

Ψt2x4 − Ψt3x2 − RaΨtxx


− RaΨxx + Ψtx4 − Ψt2x2

=
1
Pr

[−Ψtx4 + Ψx6 ], ψtkxn
def
=
∂k+nψ

∂tk∂xn
. (10)

Note that in this formulation, the parameter δ serendipitously
cancels. This does notmean that δ has no role to play as an indepen-
dent parameter; indeed, it provides the scale for the temperature
field, which emerges after the integration of the above equation for
the stream function. (Actually, in 2D such a reduction is not possi-
ble.)

Here, we note the interesting limit Sg → ∞, which reduces
Eq. (10) to the following single equation for the stream function:

Ψt2x4 − Ψt3x2 − RaΨtxx = 0. (11)

This equation can thus provide a check of the results for the full sys-
tem for very large values of Sg.However, itmust beunderstood that
Eq. (11) does not correspond to the type II model of Green–Naghdi,
which arises when the limit τ0 → 0 is taken under the assumption
K ∝ τ0; see, e.g., Ref. [18] and those therein.

4. Estimates

We begin this section by using the boundary conditions for Ψ
to evaluate the following integrals:∫ 1

−1
ΨtΨx6dx = −

1
2

d
dt

∫ 1

−1


Ψx3

2
dx, (12a)∫ 1

−1
ΨtΨxxdx = −

1
2

d
dt

∫ 1

−1


Ψx

2
dx, (12b)∫ 1

−1
ΨtΨt2x4dx =

1
2

d
dt

∫ 1

−1


Ψtxx

2
dx, (12c)
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−1
ΨtΨt2x2dx = −

1
2

d
dt

∫ 1

−1


Ψtx

2
dx, (12d)∫ 1

−1
ΨtΨtx4dx =

∫ 1

−1


Ψtx2

2
dx, (12e)∫ 1

−1
ΨtΨtx2dx = −

∫ 1

−1


Ψtx

2
dx, (12f)∫ 1

−1


ΨtΨt3x2 +


Ψt2x

2
dx = −

1
2

d2

dt2

∫ 1

−1


Ψtx

2
dx. (12g)

Note that Ψx|x=±1 = 0 yields Ψtx|x=±1 = 0. Also, the condition
thatΨ is an even function givesΨtxxΨxxxx|x=1 −ΨtxxΨxxxx|x=−1 = 0.

Multiplying Eq. (10) byΨt and integratingwith respect to x from
−1 to 1, we obtain

1
2
Sg

d2

dt2

∫ 1

−1


Ψtx

2
dx +

dE
dt

= −D, (13)

where the energy and dissipation functionals are given by

E def
=

1
2

∫ 1

−1

[
1
Pr


Ψxxx

2
+ Sg


Ψtxx

2
+ Ra


Ψx

2
+


Ψtx

2]
dx, (14a)

D
def
=

∫ 1

−1

[
1 +

1
Pr

 
Ψtxx

2
+ SgRa


Ψtx

2
+ Sg


Ψttx

2]
dx. (14b)

Since Sg > 0, the qualitative behavior of the system is expected
to be damped oscillatory, but stable. It should be noted here that
the case for stability can be argued by using different embedding
inequalities to bracket the first term in Eq. (13) by the energy
functional, leading to a differential inequality for E. However,
this goes beyond the scope of the present work. Note also that
if Sg := 0 is taken, the first term in Eq. (13), which contains
the second time derivative of a positive-definite functional, is not
present, which implies stability in the case of Fourier’s law.

5. The steady convection

The above problem admits a stationary solution (i.e., the ‘undis-
turbed state’), namely, Ψ ∗(x),Θ∗(x), for which Eqs. (8) reduce to:

Ra
δ

[
dΘ∗

dx
+

1
2

]
+

d4Ψ ∗

dx4
= 0, (15a)

−δ
dΨ ∗

dx
=

1
Pr

d2Θ∗

dx2
. (15b)

Let us now integrate Eq. (15a) and use the fact that Ψ ∗ is an even
function, whileΘ∗ is odd. Thus,

− Ra
[
Θ∗

+
1
2
x
]

+ δ
d3Ψ ∗

dx3
= 0, (16)

Then, we differentiate Eq. (15b) twice and introduce the result into
Eq. (16), thus yielding

d4Θ∗

dx4
+ RyΘ∗

= −
1
2
Ryx, Ry :=

Ra
Pr

=
gα∆Th4

κν
, (17)

where Ry is a version of the Rayleigh number often used in models
of free convection.

Eq. (17) is of a higher order and therefore requires additional
boundary conditions. The latter stem from Eq. (15b) taken at the
boundarieswhen the b.c.’s for the derivative of the stream function
are acknowledged, namely,

d2Θ∗

dx2


x=±1

= 0. (18)

Fig. 1. Temperature distribution for different values of λ.

Fig. 2. Profile of the scaled stream function Ψs for different λ.

The solution of Eq. (17) subject to the b.c.’s from Eqs. (9), (18) has
the form

Θ∗(x) = −
1
2
x −

cosh(λ) cosh(λx) sin(λ) sin(λx)
cosh(λ)− cos(λ)

+
1
2
cos(λ) cos(λx) sinh(λ) sinh(λx)

cosh(λ)− cos(λ)
, (19a)

where λ =
4
√
Ry/

√
2. The result for the temperature field is shown

in Fig. 1. From the last equation one can easily determine that Ψ ∗

is given by

Ψs(x) :=
δ

λ
PrΨ ∗(x) = −

cosh(λ) cosh(λx) sin(λ) cos(λx)
cosh(2λ)− cos(2λ)

−
cosh(λ) sinh(λx) sin(λ) sin(λx)

sinh(2λ)− cos(2λ)

+
cos(λ) sin(λx) sinh(λ) sinh(λx)

cosh(2λ)− cos(2λ)

−
cos(λ) cos(λx) sinh(λ) cosh(λx)

cosh(2λ)− cos(2λ)

−

√
2
4

sin(2λ)+ sinh(2λ)
cosh(2λ)− cos(2λ)

, (19b)

where the ‘scaled’ stream function Ψs is introduced for conve-
nience of presentation. The profile of the stream function of the
stationary solution is presented in Fig. 2

Clearly, boundary layers are formed near x = ±1, while in the
core of the flow Θ∗

∝ −
1
2x and Ψ ∗ is approximately constant.

This can be easily verified if the independent variable is scaled by λ
within the boundary layer. When this is done, as depicted in Fig. 3,
we see that the four profiles are virtually indistinguishable, i.e.,
they present the solution inside the boundary layer, the latter not
being affected by the flow in the core.
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Fig. 3. Profile of the scaled stream function Ψs as function of the scaled coordinate
ξ = (x + 1)λ for different values of λ.

6. Beam–Galerkin expansion

Our approach to investigating the boundary value problems
(8a), (8b), (9) is to use Galerkin expansions with Rayleigh beam
functions [19] and harmonic functions as the basis sets, respec-
tively. These functions satisfy the four b.c.’s for the stream function
given in Eq. (9). Details of the application of the beam–Galerkin ex-
pansions can be found in [20,21]. Here, we follow [16], where the
interaction with the harmonic functions is elaborated upon, and
where all relevant formulas can be found.

Taking advantage of the symmetry, we expand the stream func-
tion Ψ into even Rayleigh beam functions and the temperature
field,Θ , into odd harmonic functions:

Ψ (x, t) =

N−
i=1

pi(t)ci(x), Θ(x, t) =

N−
i=1

di(t) sin(iπx), (20)

where N is sufficiently large to ensure an accurate approximation.
As shown in the above cited works, the convergence of the series
fromEq. (20) is fifth-order algebraicwithN , thusmaking themvery
efficient.2

We substitute the above expansions into Eqs. (8), and employ
the necessary expansion formulas (see the Appendix), to obtain the
following dynamical system:

N−
j=1

βijṗi = −
Ra
δ

N−
i=1

iπχijdi −
Ra
δ

√
2 tanh κj
κj

+ κ4
j pj, (21a)

Sgd̈j − Sgδ
N−
i=1

bijṗi + ḋj − δ

N−
i=1

bijpi = −
1
Pr

j2π2dj, (21b)

where bij =
∑N

k=1 aikσ̂kj, j = 1, 2, . . . ,N (see the Appendix), and a
superposed dot denotes a time derivative. For the sake of brevity,
we introduce the following notation:

X := {iπχij}, B := {βij}, C = (BT )−1
:= {cij}, (22)

B := {bij}, h := {hj},

K := {κ4
i δij}, Π2 := {j2π2δij},

along with the vectors

ga
= −

1
2
Ra
δ

Ch, gb
= 0, g c

= −
1
2
RaBTCh.

It is convenient to introduce a new ‘composite’ vector of un-
knowns y as follows: yi := pi, yN+i := di, y2N+i := ḋi, gi := ga

i ,

2 Even a twenty-term expansion gives accuracy of order 10−7 , which makes the
proposed method very well suited for the treatment of convective problems in
plane-parallel enclosures.

gN+i = gb
i = 0, g2N+i := gc

i . Moreover, we define A to be the fol-
lowing block matrix

A :=


CK −

Ra
δ

CXT 0

0 0 I

δBTCK +
δBT

Sg
−RaBTCXT

−
Π2

Sg Pr
−

I

Sg

 , (23)

where I := {δij} is the N × N identity matrix, δij is Kronecker’s
delta—not to be confused with the parameter δ, and 0 is the zero
matrix.

Note that for the Fourier case, we have a 2N × 2N system and

A =

 CK −
Ra
δ

CXT

δBT
−

1
Pr
Π2

 . (24)

With the help of the above notation, we re-write Eqs. (21) in the
form ẏ = Ay+g . For theMC case, we obtain a 3N×3N system and
A has 3N eigenvalues, while for the Fourier case, Sg := 0, and we
have to deal with 2N eigenvalues. This is also the case for Sg → ∞,
but for a different reason: Eq. (8b) can be integrated once in time,
reducing thus the overall order of the system.

To simplify our analysis, we define the auxiliary variableΦ(x, t)
:= Ψt(x, t), which when introduced into Eq. (11) yields

Φtx4 − Φt2x2 − RaΦxx = 0. (25)

The spectral expansion ofΦ is obtained from the first expression in
Eq. (20), where φi := ṗi. Consequently, the corresponding Galerkin
system is

κ4
j φ̇j −

N−
i=1

βijφ̈i − Ra
N−
i=1

βijφi = 0. (26)

Following the same idea, we formulate a dynamical system in
the form ẏ = Ay, where y is the composite vector of unknowns
yi := φi, yN+i := φ̇i; andnow theblockmatrix of coefficients reads:

A :=


0 I

−Ra I CK


. (27)

7. Truncated Galerkin series for the eigenvalues

In order to elucidate the approach of this section we begin with
a particular set of values for the parameters, namely,

Pr = 0.73, Ra = 5.0 × 103, δ = 0.16, (28)

and vary the Straughan number. Note that Pr = 0.73 is a typical
value for gases. As is well known, in slow flows, even gases can be
regarded as incompressible.We have chosen a large Rayleigh num-
ber (the symbol Ra in Eq. (28)) here because in the case of g-jitter,
a parametric instability occurs for very large Ra. Since thermal re-
laxation can make the motion more oscillatory, one may generally
expect to find instability only when Ra is very large. The specific
values in Eq. (28) are chosen in order to compare our present find-
ings with our previous works on two-gradient convection [14,16].

In order to check the robustness of the eigenvalue computations
and the role of truncation, we solve the eigenvalue problem for dif-
ferent values ofN . We ran several numerical experiments (not pre-
sented here) in order to determine the sensitivity of the results to
the truncation of the spectral series. Using the software package
Mathematica ©, eigenvalues were obtained for N = 1, 3, 7, 15;
they are presented in Table 1 for three different Straughan num-
bers and for the simple Fourier case (Sg := 0), as well as for the
limiting case Sg → ∞.
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Table 1
Eigenvalues for different number of terms for Ra = 5 × 105 .

Sg → ∞ Sg = 1.0 Sg = 0.1 Sg = 0.01 Sg := 0

Single-term expansion

−5.09 ± 707.09 i −5.09 ± 680.62 i −5.09 ± 680.71 i −5.21 ± 681.58 i −11.85 ± 680.63 i
– −1.00 −10.00 −99.74 –

Three-terms expansion

−4.93 ± 707.09 i −5.62 ± 706.50 i −5.63 ± 706.60 i −5.85 ± 707.50 i −12.54 ± 705.87 i
−19.86 ± 706.83 i −23.02 ± 704.62 i −23.04 ± 705.01 i −23.80 ± 708.90 i −51.73 ± 701.36 i
−46.48 ± 705.58 i −42.62 ± 642.60 i −42.47 ± 643.39 i −42.16 ± 651.25 i −101.65 ± 648.13 i

– −1.03 −10.00 −99.34 –
– −1.00 −10.03 −99.76 –
– −1.00 −10.24 −99.81 –

Seven-terms expansion

−4.93 ± 707.09 i −5.00 ± 706.93 i −5.01 ± 707.02 i −5.14 ± 707.86 i −11.74 ± 706.90 i
−19.74 ± 706.83 i −20.04 ± 706.20 i −20.03 ± 706.55 i −20.42 ± 709.93 i −46.95 ± 706.23 i
−44.44 ± 705.71 i −45.13 ± 704.27 i −45.06 ± 705.05 i −45.44 ± 712.75 i −105.72 ± 704.91 i
−79.10 ± 702.67 i −80.44 ± 699.98 i −80.18 ± 701.36 i −79.59 ± 715.25 i −188.22 ± 702.56 i
−123.93 ± 696.16 i −126.45 ± 691.53 i −125.76 ± 693.65 i −122.26 ± 715.68 i −295.04 ± 698.20 i
−179.61 ± 683.91 i −184.98 ± 675.78 i −183.46 ± 678.77 i −173.46 ± 711.29 i −428.61 ± 688.50 i
−252.43 ± 660.51 i −241.41 ± 566.55 i −237.48 ± 570.01 i −206.35 ± 613.88 i −574.33 ± 626.68 i

– −1.00 −10.00 −99.36 –
– −1.00 −10.03 −99.73 –
– −1.02 −10.19 −99.76 –
– −1.07 −10.65 −102.47 –
– −1.17 −11.64 −109.83 –
– −1.36 −13.54 −125.26 –
– −1.85 −18.41 −166.64 –

Fifteen-terms expansion

−4.93 ± 707.09 i −4.94 ± 707.08 i −4.94 ± 707.16 i −5.06 ± 708.00 i −11.70 ± 707.08 i
−19.74 ± 706.83 i −19.75 ± 706.77 i −19.74 ± 707.12 i −20.08 ± 710.51 i −46.78 ± 706.97 i
−44.41 ± 705.71 i −44.43 ± 705.58 i −44.35 ± 706.35 i −44.59 ± 714.05 i −105.26 ± 706.69 i
−78.96 ± 702.68 i −78.98 ± 702.45 i −78.69 ± 703.81 i −77.84 ± 717.58 i −187.13 ± 706.09 i
−123.38 ± 696.26 i −123.38 ± 695.88 i −85.95 ± 160.95 i −118.74 ± 719.45 i −292.41 ± 704.98 i
−177.70 ± 684.42 i −177.63 ± 683.82 i −122.66 ± 697.95 i −132.93 ± 560.89 i −421.09 ± 703.08 i
−241.91 ± 664.44 i −241.75 ± 663.54 i −150.05 ± 109.42 i −165.89 ± 717.32 i −573.20 ± 700.06 i
−316.06 ± 632.54 i −315.72 ± 631.15 i −176.13 ± 686.66 i −177.52 ± 553.84 i −748.77 ± 695.51 i
−400.18 ± 582.97 i −399.59 ± 580.75 i −238.91 ± 667.07 i −207.63 ± 525.87 i −947.85 ± 688.94 i
−494.36 ± 505.58 i −493.39 ± 501.77 i −310.82 ± 635.03 i −217.41 ± 707.85 i −1170.53 ± 679.75 i
−598.72 ± 376.22 i −597.25 ± 368.48 i −391.57 ± 584.08 i −248.39 ± 507.32 i −1416.97 ± 667.15 i

−480.75 ± 502.34 i −270.19 ± 686.40 i −1687.48 ± 650.08 i
−577.62 ± 359.00 i −306.27 ± 515.35 i −1982.85 ± 626.81 i

−317.78 ± 646.30 i −2305.84 ± 593.04 i
−342.23 ± 580.48 i −2667.60 ± 497.69 i

−242.52 −1.00 −10.00 −99.36 –
−302.44 −1.00 −10.03 −99.74 –
−387.21 −1.02 −10.19 −99.76 –
−618.24 −1.07 −10.64 −102.43 –
−808.75 −1.17 −11.60 −109.58 –
−1291.30 −1.35 −13.37 −123.97 –
−1653.20 −1.64 −16.31 −149.43 –
−2061.72 −2.10 −20.91 −192.18 –

−2.77 −27.80 −265.20 –
−3.71 −37.97 −404.51 –
−5.00 −53.20 −684.80 –
−6.73 −77.83 −1029.48 –
−9.05 −135.81 −1361.48 –
−12.23 −245.13 −1697.28 –
−23.96 −478.98 −2141.78 –
−139.03 −881.59
−282.44 −1309.73
−369.46 −1669.76
−577.77 −2130.88
−845.04
−1303.44
−1666.74
−2129.75

The conclusion from the results presented in the Table 1 is
that (in agreement with the theoretical fifth order of the spectral
method) the convergence is very good in the sense that the
eigenvalues with lower indexes do not change very much when
more terms are taken in the expansion. Even a one-term expansion

is, qualitatively, quite good in predicting the behavior of the
system. We mention that the first seven eigenvalues change by
less than 1% when increasing the truncation limit from N = 15
to N = 20. For this reason we do not ‘‘overload’’ the presentation
with the values obtained for N = 20; we just mention that N = 15
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Fig. 4. Convergence of selected eigenvalues with the number of terms N . Here:
Sg = 0.01, Ra = 5 × 105, Pr = 0.73, δ = 0.16.

Fig. 5. The distribution of the first several eigenvalues for Sg = 0.01, Ra =

5 × 103, Pr = 0.73, δ = 0.16.

turned out to give excellent approximations for the eigenvalues in
all the cases presented here. Note also that we have numbered the
eigenvalues so that the real parts of thosewith higher indexes have
larger absolute values (i.e., more negative).

8. Results and discussion

From Table 1, one sees that the non-oscillatory eigenvalues are
all negative and the real parts of the oscillatory modes are also
negative, i.e. no growing modes exist. This means that MC-based
two-gradient convection is stable for the presented values of Sg.
The first column gives a very good validation of the algorithm
because it is computed for a different system, Eq. (26), wherein
Sg → ∞, and the comparison with the second column is
quantitatively very good for the common eigenfunctions. Note that
Eq. (11) has merely 2N eigenvalues (like the case Sg := 0), while
the full MC model has 3N eigenvalues.

The oscillatory modes, however, change dramatically with the
addition of relaxation. As it can be seen in Table 1, the lowest
oscillatory eigenvalues have real parts that are less negative than
the respective eigenvalues for the pure Fourier case, as presented
in the fifth column of Table 1. For a better appreciation of the
behavior of the eigenvalues, we have, in Fig. 4, presented results
for eigenvalues with index one and four.

For each eigenvalue presented, we begin with the respective
numbers of terms in the expansion and increase them further to
track how sensitive the results are to truncation; and it is clear that
there is a convergence of the respective eigenvalue.

In Fig. 5 we show the distribution of the first seven purely real
eigenvalues, and the first seven complex eigenvalues.

One sees that, with the increase of the index, the complex
eigenvalues reach a (negative) limit for the real part, i.e., the

Fig. 6. Time evolution of the stream function at the point x = 0.9 for Ra =

5000, Pr = 0.73, Sg = 0.1. The numerical solution (red/solid line) compared to
a properly scaled function as given by the lowest eigenmode µ = −4.93652 −

71.4876i (blue/dashed line).

ability of the system to damp the oscillatory motion saturates to
approximately −100 for Sg = 0.01. This defines a clear time
scale for the decay of the oscillatory motion connected with the
inverse of the limit of the real part of the eigenvalues. This is not
the case, however, for the Fourier model, where the real parts of
the eigenvalue continue decreasing with the eigenvalue index.

One can clearly see the two-pronged effect of including thermal
relaxation. First, relaxation gives rise to real, purely negative,
eigenvalues which act to speed up, relative to Fourier’s law, the
dissipation of energy distributed over these modes. Second, the
energy partitioned over the oscillatory modes decays more slowly,
and the oscillations are somewhat faster (the imaginary parts can
be twice as big as the respective imaginary parts of the Fourier
case). This means that the oscillatory transients will decay in a
longer time, making the system less damped, as far as oscillations
are concerned. Thismight have the effect of lowering the threshold
of instability; however, a conclusive answer to this important
question must await the results of future investigations of two-
dimensional flows.

These observations are fully aligned with the prediction from
the general estimates done above.

On a more quantitative basis, we sought to verify our results by
means of direct numerical integration of System (21). We began
with the trivial initial condition pi(0) = 0, di(0) = ḋi(0) =

0, i = 1, 2, . . . ,N , and integrated until the stationary solution
from Eqs. (19) was reached. The results we obtained compared
with Eqs. (19) within a couple of percentage points over the entire
interval x ∈ [−1, 1]. Naturally, this happens only when a stable
evolution takes place, and the motion itself is oscillatory because
of the presence of the modes with nontrivial imaginary parts.
A similar case for Ra = 5 × 105 is seen in Table 1. For Sg ≤ 0.1,
the real part of the lowest oscillatory mode is less negative than
the lowest non-oscillatory mode. This means that for reasonably
small Sg, the non-oscillatory transient in the solution dies out
quickly, and the oscillatory one remains and is observed in the
direct numerical integration of Eqs. (19). Fig. 6 shows this effect.

Lastly, we carried out one more verification: we determined
the onset of instability for the direct numerical solution. We found
that it occurs for the same values of the governing parameters for
eigenmodes with positive real parts exist. Naturally, the time in-
crement was chosen sufficiently small in order to avoid numerical
instability.

9. Invariance issues

In [22], it was pointed out that Eq. (1) leads to a paradox in
the case of thermal shock propagation, but that the physically
unrealistic behavior observed could be eliminated if the convective
time derivative was used in lieu of ∂t in the MC law. The resulting
‘convective’ MC law3 is given by

3 An interesting development of Eq. (29) in the thermodynamical framework is
outlined in a recent article by Ostoja-Starzewski [23].
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q + τ0(∂t + v · ∇)q = −K∇T , (29)

which we observe is Galilean invariant, thus resolving the afore-
mentioned paradox. It should be noted that the system consisting
of Eqs. (2), (29) is valid for any kind of material continuum; one
has only to close the system by including the appropriate forms of
the continuity and momentum equations, as well as constitutive
relation(s) for the stress.

Unfortunately, in more than one-dimension, the ‘convective’
MC law of [22] is inextricably coupled to Eq. (2), because the
heat flux q cannot be eliminated between the two equations.
This suggested that a further refinement of the MC law might
be possible; and it would be based on an even more general
invariant temporal rate operator. It should be noted here that
other researchers have investigated the possibility of formulating
a frame-indifferent generalization of the MC law. In 1969, Fox [24]
proposed a generalization of the MC law based on the Jaumann
invariant time derivative. In 1984, Franchi and Straughan [6]
investigated the implications of Fox’s re-formulation in the setting
of Bénard convection. The situation became somewhat ambiguous
when in [7], it was shown that the model based on the Jaumann
rate predicts a direction for the convective vortices that is opposite
of the expected one.

Recently, it was argued in [25] that a different frame indifferent
objective rate should be used in the MC law, namely, the upper-
convected Oldroyd derivative, which results in

τ0[∂tq + v · ∇q − q · ∇v + (∇ · v)q] + q = −K∇T . (30)

One of themain advantages of using the last equation is that it leads
to a single equation for the temperature field. Following the gist of
a similar derivation for the displacement current given in [26], it is
also shown in [25] that the flux vector q can be eliminated between
Eqs. (2) and (30), thus yielding

τ0[Ttt + 2v · ∇Tt + vt · ∇T + (Tt + v · ∇T )(∇ · v)

+ v · ∇(v · ∇T )] + Tt + v · ∇T = κ∇2T , (31)

a single equation for the temperature field, just as in the case of
(the much simpler) Eq. (3).

At this juncture, it is important to investigate what are the ef-
fects related to frame-indifference that are not present in Eq. (1). In
the case of thermo-compressible flow, the investigation of this is-
sue has already begun; see [27], wherein the propagation of acous-
tic waves and second-sound in fluids are studied. Simultaneously,
the mathematical issues connected with the new model have also
received attention [28]. It is important to understand that, in an in-
compressible flow of the type of the considered here, two-gradient
convection can provide an opportunity to investigate the role of the
different terms in the invariant time rate of the flux.

In order to identify the role of the different components of the
heat flux, we return to the equations for the energy conservation,
Eq. (2), heat flux Eq. (29), and the momentum equations, Eq. (4),
and consider them in 1D. Below, so as to distinguish from the
vector quantities, we use capital letters for the dependent
variables, and the aforementioned equations reduce to the
following system:

∂V
∂t

= −
Ra
δ


Θ(x, t)+

x
2


+
∂2V
∂x2

, (32a)

Sg
∂Q
∂t

+ Q (x, t) = −
∂Θ

∂x
, (32b)

Sg
∂R
∂t

− Q (x, t)
∂V
∂x

= − Pr R(x, t), (32c)

∂Θ

∂t
+ δV (x, t) = −

∂Q
∂x
. (32d)

Here, Q and R denote the dimensionless horizontal and vertical
components of the heat flux, respectively. Eq. (32a) presents the
momentumequation for the vertical component fromEqs. (4). (The
other two momentum equations are trivial because there are no
horizontal and transversal components of the velocity.) Eqs. (32d)
and (32b) are for the temperature and the horizontal component
of the heat flux, respectively.

We mention here that the equation for the vertical component
of the flux, Eq. (32c), splits out from the rest of the system, i.e.
the terms connected with the convective derivative of the heat
flux vanish identically in the other equations. Yet, System (32)
shows that the vertical component of the flux, R, can be found after
the other three equations are solved; i.e., two-gradient convection
flows can play an important role in assessing the applicability
of frame-indifferent models, provided that measurements of the
vertical component of the heat flux, not based on Fourier’s law,
are available. Specifically, the heat flux must be measured directly,
without inferring it from the temperature and/or its gradient.

10. Conclusions

We considered the convective flow of a thermo-viscous fluid
in a vertical slot, subject to both vertical and horizontal tempera-
ture gradients, as a model system for investigating the role played
by thermal relaxation, as it occurs in the Maxwell–Cattaneo (MC)
law. Our main conclusion is that the MC law enhances the oscilla-
tory character of themotion, despite the fact that under certain cir-
cumstances (i.e., certain velocity and temperature profiles) relax-
ation can also play a dissipative role. The convection was found to
be stable for all values of the Straughan number considered, albeit
more oscillatory than the Fourier case. The properties of MC-based
convection revealed here can have a profound impact on unsteady
convective flow, as in the case of so-called g-jitter flow, where the
additional oscillations introduced by the presence of relaxation can
lead to resonance effects. Our findings can have important conse-
quences for 2D flows as well, where relaxation may lead to quali-
tative differences from those based on Fourier’s law.

Finally, we also reposed the problem in terms of the frame-
indifferentMCmodel, involving theOldroydupper-convected time
derivative, given in Eq. (30). We showed that the two-gradient
convective flow considered here can be used to elucidate the role
of the upper-convected terms, provided that measurements of the
heat flux, independent of the temperature and its gradient, are
available.
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Appendix. Properties of beam functions

Beam functions are defined as

sm =
1

√
2

[
sinh λmx
sinh λm

−
sin λmx
sin λm

]
, coth λm − cot λm = 0,

cm =
1

√
2

[
cosh κmx
cosh κm

−
cos κmx
cos κm

]
, tanh κm + tan κm = 0.

They are the eigenfunctions of the fourth-order Sturm–Liouville
b.v.p.
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d4u
dx4

= λ4u, u =
du
dx

= 0, for x = ±1.

The relevant derivatives of the beam functions are

c ′

n =

∞−
m=1

anmsm, s′n =

∞−
m=1

ānmcm,

c ′′

n =

∞−
m=1

βnmcm, s′′n =

∞−
m=1

β̄nmsm,

where

anm = −āmn =
4κ2

nλ
2
m

κ4
n − λ4m

,

βnm =


4κ2

nκ
2
m

κ4
m − κ4

n
(κm tanh κm − κn tanh κn) , m ≠ n,

κn tanh κn − (κn tanh κn)2 , m = n,

β̄nm =


4λ2nλ

2
m

λ4n − λ4m
(λn coth λn − λm coth λm) , m ≠ n,

λn coth λn − (λn coth λn)2 , m = n.

The expansion of unity reads

1 =

∞−
k=1

hkck(x), hk =

∫ 1

−1
ck(x)dx =

2
√
2 tanh κk
κk

.

The cross expansions between the harmonic functions and the
beam functions are given by

sin lπx =

∞−
k=1

σlksk(x), σlk =
2
√
2lπ(λk)2(−1)l

l4π4 − λ4k
,

cos lπx =

∞−
k=1

χlkck(x), χlk =
2
√
2κ3

k (−1)l+1 tanh κk
l4π4 − κ4

k
,

cn(x) =

∞−
l=1

χ̂nl cos lπx, χ̂nl =
2
√
2κ3

n (−1)l+1 tanh κn
l4π4 − κ4

n
,

sn(x) =

∞−
l=1

σ̂nl sin lπx, σ̂nl =
2
√
2lπ(λn)2(−1)l

l4π4 − λ4n
.
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